Hobza má díky novému objevu velkou šanci znovu přepsat učebnice fyzikální chemie
24. 05. 2023
Pavel Hobza z Ústavu organické chemie a biochemie AV ČR se svým týmem poprvé přepsal učeb-nice před dvaceti lety, kdy objevil a popsal tzv. nepravou vodíkovou vazbu. Spolu s kolegy z Ústavu fyzikální chemie Jaroslava Heyrovského a Technické univerzity Ostrava nyní přichází s objevem, který má potenciál dříve přijatou definici zjednodušit a studenty chemie znovu donutit k tomu, aby přehodnotili své představy o studované látce.
Tým Pavla Hobzy v původní práci popsal nepravou vodíkovou vazbu X-H…Y. Ta se neprojevovala očekávaným červeným posunem (posun k nižším frekvencím) vibrační frekvence vazby X-H, která se podílí na vodíkové vazbě, ale naopak, modrým posunem (posun k vyšším frekvencím). V nové studii publikované v časopise Journal of the American Chemical Society vědci navrhují nové zpřesnění a zjednodušení definice vodíkové vazby. Kromě protonické vazby by do ní na základě jejich výzkumu měla nově přibýt i hydridická vodíková vazba.
„Současná definice vodíkové vazby vychází z našeho objevu nepravé vodíkové vazby, která se vyznačovala modrým, a nikoliv očekávaným červeným posunem vibrační frekvence vazby X-H. Naše nedávné studie jdou ještě dál. Ukázaly, že vodíková vazba se tvoří i v případě hydridického a nikoliv pouze protonického vodíku. Navrhujeme proto upravit stávající definici vodíkové vazby tak, aby zahrnula všechny typy vazeb,“ vysvětluje profesor Pavel Hobza.
Voda se známým vzorcem H2O je velmi jednoduchá molekula tvořená kyslíkem a dvěma atomy vodíku, přičemž vodík je nejlehčí ze všech existujících prvků vůbec. Za fakt, že voda teče v kapalném stavu z kohoutku a že varu dosahuje při teplotě 100 °C je zodpovědná tzv. vodíková vazba. Ta vzniká mezi vodíkovým atomem jedné molekuly vody a atomem kyslíku druhé molekuly. Jedná se o tzv. nekovalentní interakce, díky nimž drží pohromadě dvoušroubovice DNA a které se nacházejí ve všech proteinech či enzymech. Vodíková vazba tedy hraje naprosto zásadní a nepostradatelnou roli ve většině chemických a prakticky ve všech biochemických procesech na planetě.
Většina prvků v periodické tabulce má nižší elektronegativitu, tedy schopnost k sobě přitahovat elektrony než vodík. Pouze několik prvků (např. uhlík, dusík, kyslík, halogeny) má elektronegativitu vyšší. Ve zmíněné molekule vody k sobě přitahuje kyslík elektrony z vodíku a ten se pak stává částečně kladně nabitým. Pokud se v blízkosti kladně nabitého vodíku ocitne molekula obsahující prvek, který má elektronů nazbyt a může se o ně podělit, např. kyslík nebo dusík, vznikne protonická vodíková vazba. Přitom se oslabí a prodlouží vazba mezi vodíkem a elektronegativnějším atomem. Takové prodloužení
se projeví zmenšením vibrační frekvence této vazby, tzv. červeným posuvem měřitelným infračervenou spektrometrií. Chemická vazba se vlastně chová jako struna a jejím prodloužením se sníží frekvence, a naopak zvýší vlnová délka směrem k červené části spektra. Podobný jev známe ze hry na kytaru, kde lze měnit výšku tónu právě zkracováním a prodlužováním struny na hmatníku.
V určitých případech ale může vazba mezi vodíkem a elektronegativnějším prvkem naopak zesílit, což se projeví zvýšením její vibrační frekvence, tzv. modrým posunem. V takovém případě mluvíme o už zmíněné nepravé vodíkové vazbě. Tedy o původním objevu Pavla Hobzy.
Pokud se ovšem atom vodíku naváže na prvek s nižší elektronegativitou, bude vodík najednou nabitý záporně. Pavel Hobza a jeho kolegové zkoumali nově konkrétně trimethylsilan, Me3-Si-H, kde je atom vodíku navázaný na méně elektronegativní atom křemíku a nese tudíž záporný náboj, a to v komplexech s různými elektronově chudými molekulami. Vazbu, jež v takovém případě vzniká, nazvali vědci hydridickou vodíkovou vazbou. Pomocí výpočetních metod došli k tomu, že za popsaných okolností kovalentní vazba mezi křemíkem a vodíkem oslabí a prodlouží se, zatímco její vibrační frekvence se sníží. Dojde tedy k červenému posunu, stejnému, jak ho známe z protonické vodíkové vazby. Autoři experimentálně prokázali tento červený posuv u hydridické vodíkové vazby jako první na světě. Použili k tomu infračervenou spektrometrii za nízkých teplot. Tím se jim podařilo doložit, že hydridická vodíková vazba se projevuje zcela analogicky jako protonická vodíková vazba.
Díky tomuto objevu nastal čas na úpravu stávající definice vodíkové vazby. Zůstává otázkou, je-li nutné pro takovou vazbu zavádět definici úplně novou, nebo spíš upravit tu stávající. Autoři považují za vhodnější druhou cestu a v závěru publikace v Journal of the American Chemical Society navrhují nové znění definice, aby zahrnovala oba typy vodíkové vazby, tedy jak protonickou, tak i hydridickou.
Odkaz na video: https://www.youtube.com/watch?v=ArfXTAEm69I
Původní článek: Civiš, S.; Lamanec, M.; Špirko, V.; Kubišta, J.; Špet’ko, M.; Hobza, P. Hydrogen Bonding with Hydridic Hydrogen–Experimental Low-Temperature IR and Computational Study: Is a Revised Definition of Hydrogen Bonding Appropriate? J. Am. Chem. Soc. 2023, 145, 8550-8559
https://doi.org/10.1021/jacs.3c00802
Kontakt:
Veronika Sedláčková
veronika.sedlackova@uochb.cas.cz
Přečtěte si také
- Simulovaná vesmírná mise PROMISE pošle českého astronauta do izolace a na Měsíc
- ÚOCHB AV ČR získává další ERC grant
- Vědci Botanického ústavu AV ČR pomáhají navrátit rozmanitost českým loukám
- Riziko šíření požáru je v ČR velké a trvá nezvykle dlouho
- Síla učených debat a kořeny současné vědy
- Mísení genů jako cesta k přežití: nový pohled na ochranů druhů
- Lipno a Orlík v obrazech: putovní výstava již podruhé
- Největší festival starověkých dějin začíná v pátek v Mušově u Pasohlávek
- Objev českých vědců píše novou kapitolu učebnic elektrochemie
- Termití kamikadze chrání kolonii pomocí zvláštního enzymu
Matematika, fyzika a informatika
Vědecká pracoviště
- Astronomický ústav AV ČR
Fyzikální ústav AV ČR
Matematický ústav AV ČR
Ústav informatiky AV ČR
Ústav jaderné fyziky AV ČR
Ústav teorie informace a automatizace AV ČR
Fyzikální výzkum pokrývá široké spektrum problémů, od základních složek hmoty a fundamentálních přírodních zákonů, zahrnující i zpracování dat z velkých urychlovačů, až po fyziku plazmatu při vysokých tlacích a teplotách, fyziku pevných látek, nelineární optiku a jadernou fyziku nízkých a středních energií. Astrofyzikální výzkum se soustřeďuje na výzkum Slunce – především erupcí, na dynamiku těles slunečního systému a na vznik hvězd a galaxií. V matematice a informatice se studují jak vysoce abstraktní disciplíny jako logika a topologie, tak i statistické metody a diferenciální rovnice a jejich numerická řešení. Přitom i čistě teoretické výzkumy v oblastech, jakou jsou např. neuronové sítě, optimalizace a numerické modelování, bývají často motivovány konkrétními problémy nejen v přírodních vědách. Sekce zahrnuje 6 ústavů s přibližně 1600 zaměstnanci, z nichž je asi 630 vědeckých pracovníků s vysokoškolským vzděláním.