
Vědci umí díky unikátnímu spojení dvou metod zjistit vady grafenu
20. 01. 2022
Grafen má velmi unikátní vlastnosti a mohl by vylepšit mnoho součástek a přístrojů. Pro úspěšné využití tohoto 2D materiálu v praxi je podstatné detailní pochopení jeho fyzikálně-chemických vlastností - včetně role strukturních defektů. Vědci z Ústavu fyzikální chemie J. Heyrovského Akademie věd ČR zjistili, že když zkombinují dvě různé metody měření, mohou určit, jakou roli defekty grafenu hrají v přechodech mezi elektronickými stavy a elektrochemickými reakcemi.
Studie vyšla v časopisuThe Journal of Physical Chemistry Letters. Pozornost vědců 2D materiály dlouhodobě přitahují. Jako první objevili před 15 lety grafen, který má nečekané vlastnosti. Jde o rovinnou síť jedné vrstvy atomů uhlíku uspořádaných do tvaru šestiúhelníků. Ač se vyrábí z grafitu, je průhledný, takže se dá využít při výrobě displejů a fotovoltaických článků. Je možné ho také uplatnit u produktů, jež využívají přenos elektrického náboje, např. u baterií, superkapacitorů či senzorů. Právě na přenos elektrického náboje se ve svém výzkumu zaměřili vědci Ústavu fyzikální chemie J. Heyrovského Akademie věd ČR (ÚFCH JH).
Překvapení při měření
Pro výzkum experti využili monokrystaly grafenu o velikosti několika desítek mikrometrů. Přenos elektrického náboje v grafenu je v současné době velmi diskutovaný jev. Na okrajích vzorku se náboj rychleji přenáší než v centrální části, tzv. bazální rovině, kde se nachází minimum defektů. Doposud ale bylo velmi obtížné přímým měřením odlišit, kudy a s jakou rychlostí náboj putoval.
Vědci pomocí tzv. mikrokapkové elektrochemie přenesli na bazální rovinu vzorku grafenu elektrický náboj a pomocí Ramanské spektroskopie změřili spektrální posun. Všimli si, že očekávané vychýlení ve spektrálním posunu se v závislosti na vloženém náboji rozdělilo a vykazovalo dva vrcholy (viz obr.).
Kombinace dvou metod je výhodná
Odborníci došli k závěru, že důvodem pro vznik dvou vrcholů ve spektru je existence dvou různých probíhajících procesů s odlišnou rychlostí přenosu elektrického náboje. Tento závěr není samotnou Ramanskou spektroskopií pozorovatelný, což vyzdvihuje výhody simultánní kombinace různých experimentálních metod.
„Kombinace těchto dvou metod nám umožňuje efektivně přenášet elektrický náboj na grafen a také měřit výsledný efekt na optické a elektrochemické vlastnosti grafenu,“ říká Matěj Velický, spoluautor studie.
Pro praktické využití grafenu v přístrojích, bateriích či senzorech je důležité vědět, jak rychle grafen přenáší elektrický náboj a jak tato rychlost souvisí s defekty materiálu. Díky unikátnímu spojení dvou velmi odlišných metod je nyní možné tyto vlastnosti měřit.
Kontakt:
Ing. Matěj Velický, Ph.D.
Ústav fyzikální chemie Jaroslava Heyrovského AV ČR
matej.velicky@jh-inst.cas.cz
Přečtěte si také
- Největší překladový slovník v češtině je po padesáti letech celý on-line
- Průlomová studie odhaluje souvislost mezi poruchami autoimunity a zubní skloviny
- Mikrobiom pravděpodobně neovlivňuje mezidruhové křížení
- Evropa musí změnit své stravovací návyky, upozorňují odborníci
- Staň se superdialektologem! vyzývají vědci školáky a studenty
- Bude 14. ročník mezinárodní konference o rentgenové optice v astronomii
- Teleskop FAST se před cestou do Argentiny bude testovat v Ondřejově
- Chronický zánět přispívá k rozvoji rakoviny
- Vědci zaznamenali extrémně energetickou kosmickou částici. Její původ je nejasný
- Kolísání tvorby bílkovin ovlivňuje počátek nového života
Biologie a lékařské vědy
Vědecká pracoviště
- Biofyzikální ústav AV ČR
Biotechnologický ústav AV ČR
Fyziologický ústav AV ČR
Mikrobiologický ústav AV ČR
Ústav experimentální botaniky AV ČR
Ústav experimentální medicíny AV ČR
Ústav molekulární genetiky AV ČR
Ústav živočišné fyziologie a genetiky AV ČR
Cílem výzkumu je poznávání procesů v živých organismech, a to na úrovni molekul, buněk i organismů. Biofyzikální výzkum se zabývá studiem vztahu DNA – protein a vlivu faktorů životního prostředí na organismy. V oblasti molekulární genetiky a buněčné biologie jsou studovány zejména signální cesty pro spouštění reakcí a odezvy cílových genů na tyto signály; zvláštní pozornost je věnována studiu buněčných mechanismů imunitních odpovědí. Sledovány jsou rovněž genomy mikroorganismů a procesy směřující k moderním technologiím přípravy látek s definovanými biologickými účinky. V oblasti fyziologie a patofyziologie savců a člověka je výzkum zaměřen na kardiovaskulární fyziologii, neurovědy, fyziologii reprodukce a embryologii s cílem vytvořit teoretické základy preventivní medicíny. V oblasti experimentální botaniky se výzkum věnuje genetice, fyziologii a patofyziologii rostlin a moderní rostlinné biotechnologii. Sekce zahrnuje 8 vědeckých ústavů s přibližně 1930 zaměstnanci, z nichž je asi 690 vědeckých pracovníků s vysokoškolským vzděláním.