Vědci popsali nový mechanismus syntézy hlavního „protistresového“ proteinu
26. 03. 2024
Při nedostatku kyslíku či živin buňky podléhají stresu. Osud stresované buňky z velké míry řídí protein ATF4. Ten zajišťuje, aby se buňky ze stresu rychle vzpamatovaly a nestaly se pro své okolí nebezpečné – například nekontrolovaným dělením a vznikem nádorových onemocnění. Vědci z Mikrobiologického ústavu AV ČR teď významně rozšířili popis již víc než dvacet let ustanoveného molekulárního mechanismu, kterým buňka hlavní „protistresový“ protein vytváří. A popsali novou, mnohem složitější cestu k jeho tvorbě. Výsledky, které publikoval časopis Cell Reports, jsou klíčové pro pochopení, jak naše těla reagují na stres. Mohou tak v budoucnu napomoci výzkumu léčebných terapií proti řadě onemocnění.
Buňka, stejně jako lidské tělo, podléhá v nepříznivých podmínkách stresu. Protein ATF4 je důležitým nástrojem, jenž slouží k tomu, aby se buňka dokázala se stresem vyrovnat. „Protistresovým“ proteinem a mechanismem jeho produkce se deset let zabývala Laboratoř genové exprese v Mikrobiologickém ústavu AV ČR. Vědci do detailu popsali molekulární mechanismus, kterým buňka protein tvoří, a to pouze v okamžiku, kdy se ocitne ve stresové situaci.
„Zatímco během stresové situace se syntéza velké většiny proteinů v buňce prakticky zastaví, syntéza ATF4 se naopak „rozjede“ na plno. Děje se tak díky speciálním regulačním prvkům, které se nacházejí na začátku mRNA, jež tento protein kóduje,“ vysvětluje vedoucí laboratoře Leoš Shivaya Valášek z Mikrobiologického ústavu AV ČR.
Protein, který řídí osud stresovaných buněk
Buňky si jako reakci na stresové situace vyvinuly různé mechanismy. Příkladem jsou signální dráhy, které po aktivaci cíleně ovlivňují a mění chování buňky.
Právě ATF4 protein je klíčovým průsečíkem několika takových signálních drah, který udává, co se stane se stresovanou buňkou hned v několika ohledech.
„Tento protein umožní buňce v okamžiku úplně přeprogramovat její činnost, aby všeho nechala a veškerou energii soustředila na vyrovnání se s daným stresem. Pokud se jí to v přesně daném časovém okamžiku nepodaří, ATF4 spustí tzv. programovanou buněčnou smrt, aby se takto stresovaná buňka nestala pro své okolí nebezpečnou – např. zhoubnou, tedy nekontrolovaně se dělící,“ vysvětluje Anna Smirnová z Mikrobiologického ústavu AV ČR.
Nově popsaný mechanismus významně rozšiřuje předchozí teorii
Mechanismus, jakým buňka ve stresových situacích ATF4 syntetizuje, popsaly ve dvou prestižních publikacích už v roce 2004 hned dvě vědecké skupiny – skupina Dr. Ronalda Weka v Indiana University School of Medicine a skupina Dr. Davida Rona v University of Cambridge.
„Dlouho se pak mělo za to, že tato mnoho let trvající záhada byla jednou pro vždy vyřešena. Časem se ale začaly hromadit výsledky jiných studií, které naznačovaly, že molekulární mechanismus regulace syntézy tohoto důležitého bojovníka proti stresu je mnohem složitější, než se původně zdálo,“ říká Leoš Shivaya Valášek.
Na základě těchto studií začali vědci v Mikrobiologickém ústavu AV ČR jejich desetiletý výzkumný projekt. „Shodou okolností den poté, co byl tento článek přijat, přednášel člen Britské královské společnosti David Ron v Ústavu organické chemie a biochemie AV ČR jako zvaný řečník. Sešel jsem se s ním a čerstvě přijatý manuskript mu předal s věnováním a přáním, aby mu cesta zpět domů s tímto manuskriptem v ruce rychle utekla,“ dodává badatel.
Přizpůsobení budoucích terapií
Objev je důležitý při zkoumání nových léčebných terapií. „Vzhledem k tomu, že deregulovaná syntéza ATF4 provází různé patologické stavy, včetně nádorových onemocnění, naše práce jasně ukazuje, že při zvažování vhodných terapií, které cílí na ATF4, je třeba brát na zřetel komplexnost kontroly syntézy tohoto klíčového regulátoru života či smrti stresovaných buněk,“ doplňuje.
Kontakt:
dr. rer. nat. Leoš Shivaya Valášek, DSc.
Mikrobiologický ústav AV ČR
valasekl@biomed.cas.cz
Přečtěte si také
- Top devět vyšehradských objevů představuje nová výstava
- Konference představila vize bezpečnějšího prostředí ve vědě i na univerzitách
- Expozice zve k prozkoumání života středověké společnosti. Přes mobilní aplikaci
- Akademie věd ocenila čtyři vědce medailemi
- Krajské rozpočty pod drobnohledem
- Rychlý vodíkový elektrolyzér může přinést revoluci v energetické stabilitě
- Simulovaná vesmírná mise PROMISE pošle českého astronauta do izolace a na Měsíc
- ÚOCHB AV ČR získává další ERC grant
- Vědci Botanického ústavu AV ČR pomáhají navrátit rozmanitost českým loukám
- Riziko šíření požáru je v ČR velké a trvá nezvykle dlouho
Biologie a lékařské vědy
Vědecká pracoviště
- Biofyzikální ústav AV ČR
Biotechnologický ústav AV ČR
Fyziologický ústav AV ČR
Mikrobiologický ústav AV ČR
Ústav experimentální botaniky AV ČR
Ústav experimentální medicíny AV ČR
Ústav molekulární genetiky AV ČR
Ústav živočišné fyziologie a genetiky AV ČR
Cílem výzkumu je poznávání procesů v živých organismech, a to na úrovni molekul, buněk i organismů. Biofyzikální výzkum se zabývá studiem vztahu DNA – protein a vlivu faktorů životního prostředí na organismy. V oblasti molekulární genetiky a buněčné biologie jsou studovány zejména signální cesty pro spouštění reakcí a odezvy cílových genů na tyto signály; zvláštní pozornost je věnována studiu buněčných mechanismů imunitních odpovědí. Sledovány jsou rovněž genomy mikroorganismů a procesy směřující k moderním technologiím přípravy látek s definovanými biologickými účinky. V oblasti fyziologie a patofyziologie savců a člověka je výzkum zaměřen na kardiovaskulární fyziologii, neurovědy, fyziologii reprodukce a embryologii s cílem vytvořit teoretické základy preventivní medicíny. V oblasti experimentální botaniky se výzkum věnuje genetice, fyziologii a patofyziologii rostlin a moderní rostlinné biotechnologii. Sekce zahrnuje 8 vědeckých ústavů s přibližně 1930 zaměstnanci, z nichž je asi 690 vědeckých pracovníků s vysokoškolským vzděláním.