Zahlavi

Energie budoucnosti: vědci zvýšili výkon solárních článků s perovskity

03. 08. 2022

Perovskitové solární články jsou slibnou technologií pro energii budoucnosti. Mohly by nahradit tradiční solární články na bázi křemíku. Fotovoltaika by díky nim mohla být levnější, výkonnější, flexibilnější a ekologicky šetrnější. Mezinárodnímu týmu vědců z Univerzity ve švédském Linköpingu a z Ústavu makromolekulární chemie AV ČR se podařilo zvýšit životnost a účinnost fotovoltaických článků na bázi perovskitů. Výsledky nové studie zveřejnil prestižní vědecký časopis Science.

Na zdokonalení solárních článků na základě perovskitu (sloučenina oxidu titaničito-vápenatého v krystalické formě) intenzivně pracují vědci po celém světě přes deset let. Chtějí docílit co nejúčinnější přeměny sluneční energie na energii elektrickou. Odborníkům ze švédské Univerzity v Linköpingu se povedlo vyvinout novou vrstvu perovskitového solárního článku, ve které probíhá přeměna slunečního záření na elektron. Do jedné z vrstev článku přidali aditivum, čímž usnadnili rozsah přenosu náboje. Zvýšili tak efektivitu a účinnost daného článku.

Vědci z Ústavu makromolekulární chemie AV ČR (ÚMCH) následně zkoumali vlastnosti dané vrstvy s přidaným aditivem na molekulární úrovni. Popsali mechanismus zvýšení účinnosti transportu náboje a životnosti solárního článku. „Jednotlivé složky vrstvy připravené kolegy ze Švédska se k sobě pod vlivem elektrostatických Coulomboských interakcí velice dobře přiblíží, dojde mezi nimi k přenosu elektronů a zvýší se tak účinnost daného procesu,“ vysvětlil Jiří Brus, vedoucí oddělení NMR spektroskopie Ústavu makromolekulární chemie AV ČR.

2022-08-03_Brus
Jiří Brus z Ústavu makromolekulární chemie AV ČR  (CC)

Snadnější výměnu a přenos elektronu vědci objasnili pomocí metod nukleární megnatické rezonance (NMR)  spektroskopie, která se zaměřuje na zákonitosti a vztahy mezi dynamikou molekul, strukturou hmoty, jejími makroskopickými a užitnými mechanickými či fyzikálními vlastnostmi.

Přínosem nového aditiva je vedle zvýšení efektivity solárního článku také menší environmentální zátěž v porovnání s tradičními aditivy. „Použitý typ je vysoce účinný, a při relativně nízké koncentraci umožňuje generování značného množství radikálů. Díky tomu, že omezuje také rozsah vedlejších reakcí, zvyšuje životnost solárních článků,“ doplňuje Libor Kobera z Oddělení NMR spektroskopie ÚMCH.

Priorita vědy
S novým aditivem se zlepšila také stabilita materiálu, který není citlivý na vodu. Na rozdíl od tradičních křemíkových solárních panelů mohou být ty perovskitové flexibilnější, dobře tvarovatelné třeba do podoby tašek na střechách, a také levnější s výrazně nižší zátěží pro životní prostředí. „Objev má velký potenciál, dá se předpokládat, že se v dohledné době budou perovskitové solární články s vysokou účinností vyrábět ve větší míře,“ je přesvědčen Libor Kobera.

2022-08-03_solar_orez
Složení jednotlivých vrstev solárního článku

Vědci se na rozvoj solárních článků na bázi perovskitu soustředí od roku 2000. Posledních dvanáct let probíhá intenzivní a rozsáhlý výzkum. V roce 2009 byla jejich účinnost kolem tří procent, o osm let později už procent dvacet dva. S novým aditivem to bude o další tři až pět procent více, čímž se přiblíží k účinnosti křemíkových článků, která je v současnosti devětadvacet procent.

Výzkum a vývoj organických solárních článků reaguje na aktuální společenské výzvy, jako jsou energetická soběstačnost či snížení závislosti na fosilních zdrojích. „Jde o prioritu nejen moderní vědy, ale téma rezonuje celou společností. Patří také mezi priority agendy českého předsednictví EU,“ připomíná Jiří Brus.

Vědci z ÚMCH spolupracují s kolegy z Univerzity v Linköpingu od roku 2019. Výsledky výzkumu týmu, který vede profesor Feng Gao, zveřejnily také vědecké časopisy Nature CommunicationsNature Energy či Joule.

Tiskovou zprávu najdete zde.

Tématu alternativních zdrojů energie jsme se věnovali také v článku s názvem Vědci hledají nové způsoby, jak efektivně využít sluneční energii

Text: Zuzana Šprinclová, Divize vnějších vztahů SSČ AV ČR
Foto: Pavlína Jáchimová, Divize vnějších vztahů SSČ AV ČR; Shutterstock

Licence Creative CommonsText a fotografie označená CC jsou uvolněny pod svobodnou licencí Creative Commons.

 

 

Přečtěte si také

Matematika, fyzika a informatika

Vědecká pracoviště

Fyzikální výzkum pokrývá široké spektrum problémů, od základních složek hmoty a fundamentálních přírodních zákonů, zahrnující i zpracování dat z velkých urychlovačů, až po fyziku plazmatu při vysokých tlacích a teplotách, fyziku pevných látek, nelineární optiku a jadernou fyziku nízkých a středních energií. Astrofyzikální výzkum se soustřeďuje na výzkum Slunce – především erupcí, na dynamiku těles slunečního systému a na vznik hvězd a galaxií. V matematice a informatice se studují jak vysoce abstraktní disciplíny jako logika a topologie, tak i statistické metody a diferenciální rovnice a jejich numerická řešení. Přitom i čistě teoretické výzkumy v oblastech, jakou jsou např. neuronové sítě, optimalizace a numerické modelování, bývají často motivovány konkrétními problémy nejen v přírodních vědách. Sekce zahrnuje 6 ústavů s přibližně 1600 zaměstnanci, z nichž je asi 630 vědeckých pracovníků s vysokoškolským vzděláním.

Všechny výzkumné sekce