
Největší sbírka myších kmenů otevírá možnosti pro evoluční výzkum i biomedicínu
13. 05. 2025
Unikátní sbírku kmenů myší domácích odvozených z přírodních populací, která čítá přes 90 linií, představil mezinárodní tým vědců vedený Jaroslavem Piálkem z Ústavu biologie obratlovců AV ČR. Jde o největší a nejlépe geneticky popsaný soubor svého druhu na světě. Tato revoluční alternativa k tradičním laboratorním modelům může výrazně pomoci v genetickém i biomedicínském výzkumu.
Myš domácí je nejpoužívanějším laboratorním zvířetem, využívá se ve více než 75 % biomedicínských studií. Dosavadní výzkumy většinou pracují s klasickými laboratorními kmeny, které byly odvozeny před více než 100 lety z omezeného počtu zakladatelů, a jsou si proto geneticky navzájem velmi podobné. Nová sbírka tzv. divokých kmenů myší (WDS, z anglického wild-derived strains) nabízí výrazně větší genetickou i fenotypovou variabilitu. Odpovídá rozmanitosti, jakou lze nalézt i mezi lidmi. Umožňuje tak spolehlivěji testovat výzkum biologických procesů i lidských chorob.
„Prakticky jsme převedli přírodní genetickou rozmanitost myší domácích do laboratorních podmínek,“ vysvětluje hlavní autor Jaroslav Piálek z Ústavu biologie obratlovců AV ČR. „To umožňuje spojit přednosti přírodní variability s experimentální kontrolou nezbytnou pro opakovatelný výzkum.“ Například v genetickém kódu v mitochondriální DNA u divokých kmenů bylo zjištěno více než 2100 odlišných mutací proti pouhým šesti u laboratorních myší a 23× více variant klíčového genu pro sterilitu samců u divokých kmenů. Podobný rozdíl byl prokázán ve 14 ze 16 morfologických a reprodukčních znaků. Tato čísla dokládají, že klasické laboratorní myši zachycují jen zlomek genetické bohatosti svého druhu.
Význam divokých kmenů pro vědu
Divoké myší kmeny umožňují vědcům zkoumat, jak se v přírodě vyvíjí genetická rozmanitost, jak probíhá evoluce, jak se mění geny a jejich funkce a jak vznikají bariéry mezi geneticky odlišnými populacemi vedoucí až ke vzniku nových druhů. „Díky těmto kmenům dnes můžeme lépe zkoumat, jak se dědičné informace promítají do vlastností a chování v přirozeném a evolučně dobře popsaném prostředí. Sbírku těchto kmenů plánujeme využít například k výzkumu chemické komunikace a dalších strategií chování, které hrají roli při vzniku nových druhů,“ vysvětluje Barbora Vošlajerová z Ústavu živočišné fyziologie AV ČR, spoluautorka studie.
Realističtější model pro testování léků
Díky vysoké genetické a fenotypové rozmanitosti, podobné lidské populaci, mohou divoké myší kmeny sloužit jako realističtější model pro testování nových léčiv. A zvýšit tím šanci na úspěšnost klinických studií.
„Vývoj léků je dlouhý, nákladný a vysoce rizikový proces trvající deset až patnáct let, s průměrnými náklady přesahujícími jednu až dvě miliardy dolarů do schválení klinického použití každého nového léku. Devět z deseti kandidátů vybraných v preklinických testech následně selhalo v jedné ze tří fází klinických studií v procesu schvalování léků,“ vysvětluje Jaroslav Piálek a vyzývá k širší integraci kmenů WDS do biomedicínského a genetického výzkumu. Vědci si ale zároveň uvědomují, že prosadit nové přístupy v biomedicínské komunitě zvyklé na rychlou a snadnou reprodukovatelnost výsledků nebude snadné. „Jedním z důvodů vysoké neúspěšnosti preklinických testů je totiž používání geneticky uniformních laboratorních myší. Naopak zapojení geneticky rozmanitých divokých kmenů, které zachycují variabilitu podobnou, jakou vidíme v lidské populaci, by mohlo významně zlepšit efektivitu a spolehlivost preklinického výzkumu,“ zdůrazňuje Jaroslav Piálek potenciál divokých kmenů zlepšit relevantnost, reprodukovatelnost a zejména přenositelnost výsledků preklinických studií na člověka.
O sbírce
Sbírka divokých kmenů myší, kterou spravuje Jaroslav Piálek na detašovaném pracovišti Ústavu biologie obratlovců AV ČR ve Studenci, vznikla spojením sbírek několika klíčových pracovišť: laboratoře Françoise Bonhomma (Université de Montpellier), Dietharda Tautze (Max Planck Institut), Jaroslava Piálka (ÚBO AV ČR) a Jiřího Forejta (Ústav molekulární genetiky AV ČR v Praze). Jedná se o největší a nejlépe geneticky charakterizovaný soubor divokých kmenů myší na světě. Právě probíhající analýza celogenomových sekvencí ještě zvýší její význam. Více informací o unikátní sbírce myších kmenů najdete na https://housemice.cz/cs/.
Unikátní sbírka divokých kmenů myší byla představena v nedávno publikované práci v Scientific Reports https://doi.org/10.1038/s41598-025-86505-x.
Kontakt:
Jaroslav Piálek
pialek@ivb.cz
Barbora Vošlajerová
voslajerova@iapg.cas.cz
Přečtěte si také
- Z čeho má Česko platit vyšší obranné výdaje: ekonomický pohled
- Narušení chování může předcházet poruchám paměti u Alzheimerovy nemoci
- Centrum elektronové mikroskopie rozšiřuje možnosti vědeckých týmů i průmyslu
- Experiment METRO navržený českými vědci zamíří na ISS
- Temnou minulost republiky zkoumá nový výzkumný projekt Zdivočelá země
- Co (ne)víme o žácích s kvantitativním nadáním? Česko v mezinárodním srovnání
- Čeští vědci vynalezli elektrolyt, který řeší současné problémy baterií
- Devátý ročník Veletrhu vědy je za dveřmi, láká třeba na vesmírné městečko
- Jarmila Kubíková převzala Cenu Antonína Friče za přínos časopisu Živa
- Srovnání platů a mezd: Na potřeby kvalifikovaných zaměstnanců stát připravený není
Biologie a lékařské vědy
Vědecká pracoviště
- Biofyzikální ústav AV ČR
Biotechnologický ústav AV ČR
Fyziologický ústav AV ČR
Mikrobiologický ústav AV ČR
Ústav experimentální botaniky AV ČR
Ústav experimentální medicíny AV ČR
Ústav molekulární genetiky AV ČR
Ústav živočišné fyziologie a genetiky AV ČR
Cílem výzkumu je poznávání procesů v živých organismech, a to na úrovni molekul, buněk i organismů. Biofyzikální výzkum se zabývá studiem vztahu DNA – protein a vlivu faktorů životního prostředí na organismy. V oblasti molekulární genetiky a buněčné biologie jsou studovány zejména signální cesty pro spouštění reakcí a odezvy cílových genů na tyto signály; zvláštní pozornost je věnována studiu buněčných mechanismů imunitních odpovědí. Sledovány jsou rovněž genomy mikroorganismů a procesy směřující k moderním technologiím přípravy látek s definovanými biologickými účinky. V oblasti fyziologie a patofyziologie savců a člověka je výzkum zaměřen na kardiovaskulární fyziologii, neurovědy, fyziologii reprodukce a embryologii s cílem vytvořit teoretické základy preventivní medicíny. V oblasti experimentální botaniky se výzkum věnuje genetice, fyziologii a patofyziologii rostlin a moderní rostlinné biotechnologii. Sekce zahrnuje 8 vědeckých ústavů s přibližně 1930 zaměstnanci, z nichž je asi 690 vědeckých pracovníků s vysokoškolským vzděláním.