
Jak bezchybně složit molekulární nůžky o 150 dílcích
17. 06. 2021
Tým vědců z Ústavu molekulární genetiky AV ČR ve svém novém výzkumu popsal bílkovinu, která zajišťuje správné skládání, a tím funkci tzv. sestřihového komplexu, jednoho z největších molekulárních komplexů v lidských buňkách složeného ze 150 různých komponent. Jejich výsledky před pár dny publikoval časopis Nature Communications.
V lidské DNA se nachází přibližně 20 tisíc genů, jakýchsi „stránek“ naší „genové knihy“. Každá stránka obsahuje návod pro výrobu určité bílkoviny (proteinu). Světločivné buňky v oku například syntetizují podle této „genové knihy“ proteiny důležité pro detekci světla, svalové buňky vytvářejí proteiny, ze kterých jsou složeny naše svaly. Před tím, než se bílkovina vyrobí, je informace z DNA přepsána do molekuly RNA zvané pre-mRNA, která je přesnou kopií dané stránky v DNA. Pouze malá část (asi jedna desetina), obsahuje informaci pro výrobu dané bílkoviny, zatímco zbytek je odstraněn v procesu zvaném RNA sestřih.
Chaperony – pomocníci při skládání velkých komplexů v našich buňkách
Všechny úkony spojené s RNA sestřihem zajišťují ohromné molekulární nůžky, tzv. „sestřihový komplex“, který se skládá ze 150 různých komponent (bílkovin a malých RNA). Je to takové „puzzle“, kterých musí lidská buňka složit každou minutu asi 20 tisíc. V podstatě nadlidský úkol, jenž ale naše buňky s přehledem zvládají. Pomáhají jim v tom proteiny, které vychytávají a drží pohromadě desítky dílků této velké skládačky a pak je spojují do větších celků. Těmto molekulárním pomocníkům se říká „chaperony“.
Tým David Staňka z Ústavu molekulární genetiky AV ČR nyní popsal nový chaperon a ukázal, jak funguje při skládaní sestřihového komplexu. „Zajímavostí je, že mutace v tomto chaperonu jsou spojovány s nižším tělesným vzrůstem. Pomalé skládání sestřihového komplexu by tak mohlo mít negativní vliv na naši výšku a v horším případě vést ke slepotě, neboť chyby při formování sestřihového komplexu vedou k degeneraci světločivných buněk a onemocnění zvanému retinitis pigmentosa“, upřesňuje David Staněk výsledky výzkumu, které byly nedávno publikovány v časopise Nature Communications.
Odkaz na publikaci:
Klimešová, K., Vojáčková, J., Radivojević, N. et al. TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. Nat Commun 12, 3646 (2021). https://doi.org/10.1038/s41467-021-23934-y
Kontakt:
doc. Mgr. David Staněk, Ph.D.
Ústav molekulární genetiky AV ČR
david.stanek@img.cas.cz
Přečtěte si také
- Čeští vědci objevili nové houby – žijí ve slané půdě a v kořenech mořské trávy
- IDEA Talks pro volby 2025: Co hledat ve volebních programech
- Každý sýček se počítá. I letos ornitologové okroužkovali přes 70 mláďat
- Na Chebsku začíná rozsáhlý seismický experiment s názvem ELISE
- Vědci poprvé ukázali, jak buněčné „nosiče" spouštějí invazi nádorových buněk
- Ve vakuu voda při nízké teplotě vře i mrzne zároveň
- Skrytá hrozba: parazité mohou ohrozit zdraví horských goril
- Letošní Biosmršť přinesla rekordní počet zaznamenaných druhů i unikátní nálezy
- Vědci zmapovali, kde je nejvíce houbových partnerů pro rostliny
- Jak překonat rezistenci nádorových buněk na terapii: vědci testovali nový systém
Biologie a lékařské vědy
Vědecká pracoviště
- Biofyzikální ústav AV ČR
Biotechnologický ústav AV ČR
Fyziologický ústav AV ČR
Mikrobiologický ústav AV ČR
Ústav experimentální botaniky AV ČR
Ústav experimentální medicíny AV ČR
Ústav molekulární genetiky AV ČR
Ústav živočišné fyziologie a genetiky AV ČR
Cílem výzkumu je poznávání procesů v živých organismech, a to na úrovni molekul, buněk i organismů. Biofyzikální výzkum se zabývá studiem vztahu DNA – protein a vlivu faktorů životního prostředí na organismy. V oblasti molekulární genetiky a buněčné biologie jsou studovány zejména signální cesty pro spouštění reakcí a odezvy cílových genů na tyto signály; zvláštní pozornost je věnována studiu buněčných mechanismů imunitních odpovědí. Sledovány jsou rovněž genomy mikroorganismů a procesy směřující k moderním technologiím přípravy látek s definovanými biologickými účinky. V oblasti fyziologie a patofyziologie savců a člověka je výzkum zaměřen na kardiovaskulární fyziologii, neurovědy, fyziologii reprodukce a embryologii s cílem vytvořit teoretické základy preventivní medicíny. V oblasti experimentální botaniky se výzkum věnuje genetice, fyziologii a patofyziologii rostlin a moderní rostlinné biotechnologii. Sekce zahrnuje 8 vědeckých ústavů s přibližně 1930 zaměstnanci, z nichž je asi 690 vědeckých pracovníků s vysokoškolským vzděláním.