Zahlavi

Jak bezchybně složit molekulární nůžky o 150 dílcích

17. 06. 2021

Tým vědců z Ústavu molekulární genetiky AV ČR ve svém novém výzkumu popsal bílkovinu, která zajišťuje správné skládání, a tím funkci tzv. sestřihového komplexu, jednoho z největších molekulárních komplexů v lidských buňkách složeného ze 150 různých komponent. Jejich výsledky před pár dny publikoval časopis Nature Communications.

V lidské DNA se nachází přibližně 20 tisíc genů, jakýchsi „stránek“ naší „genové knihy“. Každá stránka obsahuje návod pro výrobu určité bílkoviny (proteinu). Světločivné buňky v oku například syntetizují podle této „genové knihy“ proteiny důležité pro detekci světla, svalové buňky vytvářejí proteiny, ze kterých jsou složeny naše svaly. Před tím, než se bílkovina vyrobí, je informace z DNA přepsána do molekuly RNA zvané pre-mRNA, která je přesnou kopií dané stránky v DNA. Pouze malá část (asi jedna desetina), obsahuje informaci pro výrobu dané bílkoviny, zatímco zbytek je odstraněn v procesu zvaném RNA sestřih.

Chaperony – pomocníci při skládání velkých komplexů v našich buňkách

Všechny úkony spojené s RNA sestřihem zajišťují ohromné molekulární nůžky, tzv. „sestřihový komplex“, který se skládá ze 150 různých komponent (bílkovin a malých RNA). Je to takové „puzzle“, kterých musí lidská buňka složit každou minutu asi 20 tisíc. V podstatě nadlidský úkol, jenž ale naše buňky s přehledem zvládají. Pomáhají jim v tom proteiny, které vychytávají a drží pohromadě desítky dílků této velké skládačky a pak je spojují do větších celků. Těmto molekulárním pomocníkům se říká „chaperony“.

Tým David Staňka z Ústavu molekulární genetiky AV ČR nyní popsal nový chaperon a ukázal, jak funguje při skládaní sestřihového komplexu. „Zajímavostí je, že mutace v tomto chaperonu jsou spojovány s nižším tělesným vzrůstem. Pomalé skládání sestřihového komplexu by tak mohlo mít negativní vliv na naši výšku a v horším případě vést ke slepotě, neboť chyby při formování sestřihového komplexu vedou k degeneraci světločivných buněk a onemocnění zvanému retinitis pigmentosa“, upřesňuje David Staněk výsledky výzkumu, které byly nedávno publikovány v časopise Nature Communications.

Odkaz na publikaci:

Klimešová, K., Vojáčková, J., Radivojević, N. et al. TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. Nat Commun 12, 3646 (2021). https://doi.org/10.1038/s41467-021-23934-y

Kontakt: 

doc. Mgr. David Staněk, Ph.D.
Ústav molekulární genetiky AV ČR
david.stanek@img.cas.cz

TZ ke stažení zde

Molekulární nůžky zvané sestřihový komplex (spliceosome)

Molekulární nůžky zvané sestřihový komplex (spliceosome)

Zdroj: RCSB PDB 6AHD

Biologie a lékařské vědy

Vědecká pracoviště

Cílem výzkumu je poznávání procesů v živých organismech, a to na úrovni molekul, buněk i organismů. Biofyzikální výzkum se zabývá studiem vztahu DNA – protein a vlivu faktorů životního prostředí na organismy. V oblasti molekulární genetiky a buněčné biologie jsou studovány zejména signální cesty pro spouštění reakcí a odezvy cílových genů na tyto signály; zvláštní pozornost je věnována studiu buněčných mechanismů imunitních odpovědí. Sledovány jsou rovněž genomy mikroorganismů a procesy směřující k moderním technologiím přípravy látek s definovanými biologickými účinky. V oblasti fyziologie a patofyziologie savců a člověka je výzkum zaměřen na kardiovaskulární fyziologii, neurovědy, fyziologii reprodukce a embryologii s cílem vytvořit teoretické základy preventivní medicíny. V oblasti experimentální botaniky se výzkum věnuje genetice, fyziologii a patofyziologii rostlin a moderní rostlinné biotechnologii. Sekce zahrnuje 8 vědeckých ústavů s přibližně 1930 zaměstnanci, z nichž je asi 690 vědeckých pracovníků s vysokoškolským vzděláním.

Všechny výzkumné sekce