Zahlavi

Fyzikální ústav přispěl k vývoji nového materiálu pro mobilní sítě 5. generace

08. 01. 2020

Výzkumnému týmu Stanislava Kamby z Fyzikálního ústavu AV ČR se podařilo ve spolupráci s americkými a německými kolegy vyvinout nový mikrovlnný materiál s unikáními vlastnostmi. Má dosud nejnižší dielektrické ztráty a vysokou laditelnost. To umožní zásadní snížení energetické náročnosti mobilních sítí a méně časté nabíjení mobilních telefonů.

Zatímco dosavadní mobilní sítě využívaly frekvencí do 2.5 GHz, budoucí mobilní sítě 5. generace, tzv. 5G, budou pracovat ve frekvenčním oboru 24 až 72 GHz (1 GHz značí miliardu kmitů za sekundu). To umožní přenosovou rychlost dat až 20 gbps (gbps je zkratka miliardy bitů za sekundu). Dosavadní součástky pro takovouto technologii vykazují vysoké elektrické ztráty, a proto se fyzici zaměřují na vývoj nových materiálů s lepšími parametry, tedy s nízkými dielektrickými ztrátami a s vysokou elektrickou laditelností permitivity (nebo kapacity).

5G

Schematické obrázky studovaných krystalových struktur (SrTiO3)n-1(BaTiO3)1SrO a jejich zobrazení ve skenovacím transmisním elektronovém mikroskopu. Nejlepších mikrovlnných a terahertzových vlastností bylo dosaženo ve vzorcích s n = 6. Žluté oktaedry zobrazují TiO6 vrstvy, větší zelené a červené body atomy Sr a Ba

„Vytvořili jsme látku s novou krystalovou strukturou, která dosud v přírodě neexistovala, protože je sama o sobě termodynamicky nestabilní. Nám se ji podařilo stabilizovat interakcí s podložkou, na kterou byl materiál deponován. Získali jsme tak systém s unikátními fyzikálními vlastnosti vhodnými pro mikrovlnné aplikace. Náš materiál může pracovat až do 125 GHz, tedy výše než požadují mobilní sítě 5G,“ říká Stanislav Kamba z Fyzikálního ústavu AV ČR.

Nový materiál, v němž se střídají atomové vrstvy SrTiO3, BaTiO3 a SrO (viz obrázek), představil mezinárodní vědecký tým na konci roku 2019 v časopise Nature Materials.

Citace článku:

N. M. Dawley, E. J.Marksz, A. M. Hagerstrom, G. H. Olsen, M. E. Holtz, V. Goian, C. Kadlec, J. Zhang, X. Lu, J. A. Drisko, R. Uecker, S. Ganschow, C. J. Long, J. C. Booth, S. Kamba, C. J. Fennie, D. A. Muller, N. D. Orloff and D. G. Schlom, Nature Materials, https://doi.org/10.1038/s41563-019-0564-4

Připravila: Petra Köppl, Fyzikální ústav AV ČR ve spolupráci s Markétou Růžičkovou, Odbor mediální komunikace Kanceláře AV ČR
Foto: Fyzikální ústav AV ČR

Přečtěte si také

Biologie a lékařské vědy

Vědecká pracoviště

Cílem výzkumu je poznávání procesů v živých organismech, a to na úrovni molekul, buněk i organismů. Biofyzikální výzkum se zabývá studiem vztahu DNA – protein a vlivu faktorů životního prostředí na organismy. V oblasti molekulární genetiky a buněčné biologie jsou studovány zejména signální cesty pro spouštění reakcí a odezvy cílových genů na tyto signály; zvláštní pozornost je věnována studiu buněčných mechanismů imunitních odpovědí. Sledovány jsou rovněž genomy mikroorganismů a procesy směřující k moderním technologiím přípravy látek s definovanými biologickými účinky. V oblasti fyziologie a patofyziologie savců a člověka je výzkum zaměřen na kardiovaskulární fyziologii, neurovědy, fyziologii reprodukce a embryologii s cílem vytvořit teoretické základy preventivní medicíny. V oblasti experimentální botaniky se výzkum věnuje genetice, fyziologii a patofyziologii rostlin a moderní rostlinné biotechnologii. Sekce zahrnuje 8 vědeckých ústavů s přibližně 1930 zaměstnanci, z nichž je asi 690 vědeckých pracovníků s vysokoškolským vzděláním.

Všechny výzkumné sekce