Zahlavi

Vědci objevili buněčný „bezpečnostní vypínač“, který chrání DNA před poškozením

31. 10. 2025

Vědecké týmy Lukáše Čermáka a Hany Polášek-Sedláčkové objevily nový mechanismus, kterým buňky dohlížejí na kvalitu kopírování DNA. Když tahle kontrola selže, buňka začne replikovat DNA zbrkle a genom se tudíž stává nestabilním, což může být prvním krokem ke vzniku nádorového onemocnění. Studii zveřejnil prestižní časopis Nature Communications.

Kdykoli se buňka dělí, musí si nejdřív zkopírovat celý svůj genetický kód. Jsou to miliardy „písmen“ DNA a chybovost musí být minimální. Pokud při kopírování vzniknou chyby nebo se DNA láme, buňka se stává geneticky nestabilní – a právě tento je stav dlouhodobě spojovaný se vznikem rakoviny.

Nový výzkum, na kterém spolupracovali týmy z Ústavu molekulární genetiky a Biofyzikálního ústavu Akademie věd České republiky, popsal dosud neznámý kontrolní krok při kopírování DNA. Vědci zjistili, že bílkovina DCAF12 hlídá načasování a kvalitu tohoto procesu. Jejím úkolem je v pravý čas odstranit dočasného „montéra“, pomocníka, který pomáhá složit a dopravit díly buněčné „kopírky DNA“ do jádra – pak už ale překáží. Když je přítomný příliš dlouho, buňka začne kopírovat zbrkle a chyb přibývá.

Právě DCAF12 dá pokyn k úklidu. Díky tomu se může správně uzavřít šestidílný prstenec – „motor“, který DNA rozevírá a umožňuje její přesné opsání. „Když tahle kontrola chybí, dočasný ,montér´ se neodstraní, kopírování je pod tlakem a DNA se častěji poškozuje,“ vysvětluje Lukáš Čermák z Ústavu molekulární genetiky AV ČR.

Jinými slovy: DCAF12 funguje jako pojistka kvality. Hlídá, aby kopírování DNA probíhalo co nejpřesněji. Bez této pojistky se buňka chová rizikově – jede „na výkon“, ale nepřesně. A z takových buněk pak snáz vznikají nádory. 

Dostupná klinická data naznačují, že funkce DCAF12 souvisí s přežíváním pacientek s karcinomem vaječníků i pacientů s karcinomem plic. Navazující výzkum se proto zaměří na ověření přímé souvislosti poruchy této kontrolní dráhy s genomovou nestabilitou a rozvojem nádorů.

Výzkum podpořila Grantová agentura České republiky.


Publikace:
Anoop Kumar Yadav et al. CRL4ᴰᶜᴬᶠ¹² regulation of MCMBP ensures optimal licensing of DNA replication. Nature Communications (2025). DOI: 10.1038/s41467-025-64258-5

Kontakty:

Lukáš Čermák
Ústav molekulární genetiky AV ČR
lukas.cermak@img.cas.cz

Hana Polášek-Sedláčková
Biofyzikální ústav AV ČR
polasek-sedlackova@ibp.cz

Eliška Koňaříková
Ústav molekulární genetiky AV ČR
eliska.konarikova@img.cas.cz

TZ ke stažení zde.

Biologie a lékařské vědy

Vědecká pracoviště

Cílem výzkumu je poznávání procesů v živých organismech, a to na úrovni molekul, buněk i organismů. Biofyzikální výzkum se zabývá studiem vztahu DNA – protein a vlivu faktorů životního prostředí na organismy. V oblasti molekulární genetiky a buněčné biologie jsou studovány zejména signální cesty pro spouštění reakcí a odezvy cílových genů na tyto signály; zvláštní pozornost je věnována studiu buněčných mechanismů imunitních odpovědí. Sledovány jsou rovněž genomy mikroorganismů a procesy směřující k moderním technologiím přípravy látek s definovanými biologickými účinky. V oblasti fyziologie a patofyziologie savců a člověka je výzkum zaměřen na kardiovaskulární fyziologii, neurovědy, fyziologii reprodukce a embryologii s cílem vytvořit teoretické základy preventivní medicíny. V oblasti experimentální botaniky se výzkum věnuje genetice, fyziologii a patofyziologii rostlin a moderní rostlinné biotechnologii. Sekce zahrnuje 8 vědeckých ústavů s přibližně 1930 zaměstnanci, z nichž je asi 690 vědeckých pracovníků s vysokoškolským vzděláním.

Všechny výzkumné sekce