
Nová metoda umožní snadnou přípravu částic pro lékařskou diagnostiku
09. 11. 2018
Vědci pod vedením Petra Cíglera z Ústavu organické chemie a biochemie AV ČR a Martina Hrubého z Ústavu makromolekulární chemie AV ČR přišli s převratnou metodou, která umožňuje snadno a levně produkovat ozářené nanodiamanty a jiné materiály využitelné pro vysoce citlivou diagnostiku chorob včetně nádorových onemocnění. Jejich článek publikoval prestižní vědecký časopis Nature Communications.
Diagnostika chorob a porozumění procesům probíhajícím v buňkách na molekulární úrovni vyžaduje citlivé diagnostické nástroje. Vědci jsou dnes schopni sledovat magnetická a elektrická pole v buňkách s rozlišením v řádu desítek nanometrů a s vysokou citlivostí díky krystalovým poruchám v částicích některých anorganických materiálů. Téměř ideálním materiálem pro tyto účely je diamant. Na rozdíl od šperkařských diamantů se ale pro aplikace v diagnostice a nanomedicíně používají asi milionkrát menší diamanty – nanodiamanty, které se připravují synteticky z grafitu za vysokých tlaků a teplot.
Čistý nanodiamant však o svém okolí mnoho nesdělí. Jeho krystalová mřížka se musí nejprve řízeně poškodit tak, aby v ní vznikly zvláštní poruchy (tzv. centra dusík-vakance) umožňující optické čtení. Poškození se vytváří nejčastěji ozářením nanodiamantu rychlými ionty v částicových urychlovačích. Tyto urychlené ionty jsou schopny z krystalové mřížky nanodiamantu vyrazit atomy uhlíku, po nichž tak zůstanou v mřížce „díry“ (vakance). Ty se poté při vysokých teplotách spárují s atomy dusíku, které jsou v krystalu přítomné jako nečistoty. Nově vzniklá centra dusík-vakance jsou zdrojem fluorescence, kterou je pak možné pozorovat. Právě díky této fluorescenci mají nanodiamanty obrovský potenciál využití v medicínských i technických aplikacích. Zásadním omezením pro využití těchto materiálů v širší praxi je ale velmi drahé a málo efektivní ozařování ionty v urychlovači, které neumožňuje přípravu většího množství tohoto mimořádně cenného materiálu.
Rychlejší a levnější způsob ozařování
Tým vědců z několika výzkumných pracovišť pod vedením Petra Cíglera a Martina Hrubého publikoval v časopise Nature Communications zcela nový způsob ozařování nanokrystalů. Namísto drahého a dlouhého ozařování v urychlovači využili vědci velmi krátkého a o mnoho levnějšího ozáření v jaderném reaktoru.
Tak jednoduché to ale nebylo – vědci museli využít trik, kdy neutronové záření v reaktoru štěpí atomy bóru na lehké a velmi rychle letící ionty hélia a lithia. Nanokrystaly se nejprve musejí rozptýlit v tavenině oxidu boritého a následně se ozáří neutrony v jaderném reaktoru. Záchytem neutronů a rozpadem jader bóru vzniká hustá sprcha iontů hélia a lithia, které v nanokrystalech mají stejný efekt jako tytéž ionty produkované urychlovačem – řízenou tvorbu krystalových poruch.
Nanokrystaly jsou v tavenině oxidu boritého ozařovány neutrony (a);
neutronové záření štěpí atomy bóru na ionty hélia a lithia, schopné
z krystalové mřížky nanodiamantu vyrazit atomy uhlíku (b)
Díky vysoké hustotě této částicové sprchy a možnosti ozářit v reaktoru mnohem větší množství materiálu je možné snadno a daleko levněji připravit najednou desítky gramů vzácného nanomateriálu, což je přibližně tisíckrát více, než kolik byli vědci dosud schopni získat při srovnatelném ozařování v urychlovačích. Tato metoda se ukázala jako úspěšná nejen pro tvorbu poruch v mřížce nanodiamantu, ale i na dalším nanomateriálu, karbidu křemíku. Vědci proto předpokládají, že by metoda mohla sloužit univerzálně pro produkci nanočástic s definovanými poruchami ve velkém měřítku.
Nová metoda vychází z principu využívaného při terapii bórovým neutronovým záchytem (boron neutron capture therapy – BNCT), kdy je pacientovi podána sloučenina bóru. Po jejím nahromadění v nádoru je pacient ozářen neutrony, které způsobí štěpení jader bóru na ionty hélia a lithia. Ty následně zničí nádorovou tkáň, v níž je bór nahromaděn. Díky principu známému z experimentální terapie nádorů se tak nyní povedlo vytvořit cestu pro efektivní výrobu nanomateriálů s vysokým potenciálem využití mimo jiné i v diagnostice nádorových onemocnění.
Související články:
Předsedkyně Akademie věd si prohlédla Ústav organické chemie a biochemie
Průlom ve studiu elektromechanického chování molekul
Objev českých vědců může napomoci lepšímu transportu léčiv do buněk
Připravil: Ústav organické chemie a biochemie AV ČR ve spolupráci s Odborem mediální komunikace Kanceláře AV ČR
Ilustrace: Ústav organické chemie a biochemie AV ČR
Úvodní foto: nano.petrcigler.cz
Přečtěte si také
- Vědecká rada na návštěvě v Dolních Břežanech
- Akademický sněm uvítal navýšení rozpočtu. „Je to pozitivní zpráva,“ řekla předsedkyně
- Odborníci hovořili o potenciálu a rizicích genetických modifikací
- ČR hostila 68. plenární zasedání ESFRI
- Potřebujeme ucelenou strategii pro boj se suchem, shodují se čeští odborníci
- Bez omezení benzinové a naftové dopravy nelze splnit cíle Pařížské dohody
- Kosti dokážou to, co kůže a krev. Unikátní výzkum publikoval časopis Nature
- Do Fyziologického ústavu putuje ocenění HR Excellence in Research Award
- Nová databáze DNA představuje vzorky ze starodávných lidských populací
- AV ČR vydala stanovisko k evropskému rámcovému programu Horizon Europe