Zahlavi

Fyzikální ústav přispěl k vývoji nového materiálu pro mobilní sítě 5. generace

08. 01. 2020

Výzkumnému týmu Stanislava Kamby z Fyzikálního ústavu AV ČR se podařilo ve spolupráci s americkými a německými kolegy vyvinout nový mikrovlnný materiál s unikáními vlastnostmi. Má dosud nejnižší dielektrické ztráty a vysokou laditelnost. To umožní zásadní snížení energetické náročnosti mobilních sítí a méně časté nabíjení mobilních telefonů.

Zatímco dosavadní mobilní sítě využívaly frekvencí do 2.5 GHz, budoucí mobilní sítě 5. generace, tzv. 5G, budou pracovat ve frekvenčním oboru 24 až 72 GHz (1 GHz značí miliardu kmitů za sekundu). To umožní přenosovou rychlost dat až 20 gbps (gbps je zkratka miliardy bitů za sekundu). Dosavadní součástky pro takovouto technologii vykazují vysoké elektrické ztráty, a proto se fyzici zaměřují na vývoj nových materiálů s lepšími parametry, tedy s nízkými dielektrickými ztrátami a s vysokou elektrickou laditelností permitivity (nebo kapacity).

5G

Schematické obrázky studovaných krystalových struktur (SrTiO3)n-1(BaTiO3)1SrO a jejich zobrazení ve skenovacím transmisním elektronovém mikroskopu. Nejlepších mikrovlnných a terahertzových vlastností bylo dosaženo ve vzorcích s n = 6. Žluté oktaedry zobrazují TiO6 vrstvy, větší zelené a červené body atomy Sr a Ba

„Vytvořili jsme látku s novou krystalovou strukturou, která dosud v přírodě neexistovala, protože je sama o sobě termodynamicky nestabilní. Nám se ji podařilo stabilizovat interakcí s podložkou, na kterou byl materiál deponován. Získali jsme tak systém s unikátními fyzikálními vlastnosti vhodnými pro mikrovlnné aplikace. Náš materiál může pracovat až do 125 GHz, tedy výše než požadují mobilní sítě 5G,“ říká Stanislav Kamba z Fyzikálního ústavu AV ČR.

Nový materiál, v němž se střídají atomové vrstvy SrTiO3, BaTiO3 a SrO (viz obrázek), představil mezinárodní vědecký tým na konci roku 2019 v časopise Nature Materials.

Citace článku:

N. M. Dawley, E. J.Marksz, A. M. Hagerstrom, G. H. Olsen, M. E. Holtz, V. Goian, C. Kadlec, J. Zhang, X. Lu, J. A. Drisko, R. Uecker, S. Ganschow, C. J. Long, J. C. Booth, S. Kamba, C. J. Fennie, D. A. Muller, N. D. Orloff and D. G. Schlom, Nature Materials, https://doi.org/10.1038/s41563-019-0564-4

Připravila: Petra Köppl, Fyzikální ústav AV ČR ve spolupráci s Markétou Růžičkovou, Odbor mediální komunikace Kanceláře AV ČR
Foto: Fyzikální ústav AV ČR

Přečtěte si také

Matematika, fyzika a informatika

Vědecká pracoviště

Fyzikální výzkum pokrývá široké spektrum problémů, od základních složek hmoty a fundamentálních přírodních zákonů, zahrnující i zpracování dat z velkých urychlovačů, až po fyziku plazmatu při vysokých tlacích a teplotách, fyziku pevných látek, nelineární optiku a jadernou fyziku nízkých a středních energií. Astrofyzikální výzkum se soustřeďuje na výzkum Slunce – především erupcí, na dynamiku těles slunečního systému a na vznik hvězd a galaxií. V matematice a informatice se studují jak vysoce abstraktní disciplíny jako logika a topologie, tak i statistické metody a diferenciální rovnice a jejich numerická řešení. Přitom i čistě teoretické výzkumy v oblastech, jakou jsou např. neuronové sítě, optimalizace a numerické modelování, bývají často motivovány konkrétními problémy nejen v přírodních vědách. Sekce zahrnuje 6 ústavů s přibližně 1600 zaměstnanci, z nichž je asi 630 vědeckých pracovníků s vysokoškolským vzděláním.

Všechny výzkumné sekce