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I. A Survey of The Topic

Nowhere-zero flows in (finite) graphs have been introduced by Tutte [Tu1,
Tu2, Tu3]. Primarily he showed that a planar graph is k-colorable if and only
if its dual admits a nowhere-zero k-flow (its edges can be oriented and assigned
values ±1, . . . ,±(k− 1) so that the sum of the incoming values equals the sum
of the outcoming ones for every vertex of the graph). Tutte also proved the
classical equivalence result that a graph admits a nowhere-zero k-flow if and
only if it admits a flow whose values are the nonzero elements of a finite Abelian
group of order k.

There are three celebrated unsolved conjectures dealing with nowhere-zero
flows in bridgeless graphs, all due to Tutte. The first is the 5-Flow Conjecture
of [Tu1], that every such graph admits a nowhere-zero 5-flow. The 4-Flow
Conjecture of [Tu3] suggests that if the graph does not contain a subgraph
contractible to the Petersen graph, then it has a nowhere-zero 4-flow. Finally
the 3-Flow Conjecture of Tutte is that if the graph does not contain an edge
cut of cardinality 1 and 3, then it has a nowhere-zero 3-flow. The Weak 3-
Flow Conjecture, introduced by Jaeger [J4], is that there exists k ≥ 4 such
that every k-edge-connected graph has a nowhere-zero 3-flow (it is well-known
that for k = 4 this is an equivalent form of the 3-Flow Conjecture). The
5- and 3-Flow Conjectures generalize two known properties of planar graphs,
namely the classic results of Heawood [He] and Grötzsch [Gr], that every planar
graph is 5-colorable and every planar graph without triangles is 3-colorable,
respectively. Jaeger [J1] and Kilpatrick [Ki] proved that every bridgeless graph
admits a nowhere-zero 8-flow. Seymour [Se2] has improved this result showing
that every bridgeless graph admits a nowhere-zero 6-flow. Jaeger [J1] also
proved that every 4-edge-connected graph has a nowhere-zero 4-flow. Certain
generalizations of the last two results were obtained by Jaeger, Linial, Payan,
and Tarsi [JLPT].

By a cycle we mean a graph where every vertex has even valency. A circuit
is a 2-regular connected graph. A cycle double covering (in abbreviation CDC)
of a graph is a family S of cycles such that every edge of the graph is contained
in exactly two cycles from S. If the number of cycles is k, then S is called a
k-CDC. A graph has a 2-CDC if and only if it has a nowhere-zero 2-flow. The
following statements are pairwise equivalent for any graph G.

- G has a 3-CDC,
- G has a 4-CDC,
- G has a nowhere-zero 4-flow.

Thus an equivalent form of the 4-Flow Conjecture is that if a bridgeless graph
does not contain a subgraph contractible to the Petersen graph, then it has
a 4-CDC (or, equivalently, a 3-CDC). Alspach, Goddyn, and Zhang [AGZ]
proved that such graphs have a CDC. The CDC (resp. 5-CDC) Conjecture is
that every bridgeless graph has a CDC (resp. 5-CDC). This conjecture was
explicitly formulated by Seymour [Se1] and Szekeres [Sz] (resp. Celmins [C]
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and Preismann [Pr]). Jaeger [J3] pointed out that the CDC conjecture holds
true if the following two conjectures are satisfied. The first one, formulated
by Fleischner [Fl1], is that every cyclically 4-edge connected cubic graph has
either an edge-3-coloring or a dominating circuit (i. e., a circuit whose vertices
are incident to every edge of the graph). The second one is the Sabidussi’s
Compatibility Conjecture [Sa] that given an eulerian trail T in an eulerian
graph G without 2-valent vertices, there exists a decomposition S of G into
circuits such that consecutive edges in T belong to different circuits in S. By
Fleischner [Fl2], the Sabidussi’s Compatibility Conjecture is equivalent to the
conjecture that given a dominating circuit C in a cubic graph G, there exists
a cycle double cover of G which includes C. A stronger conjecture, so called
Fixed Circuit CDC Conjecture, was introduced by Goddyn [Go2]. It says that
given a circuit C in a bridgeless graph G, there exists a CDC of G which
includes C.

A survey about nowhere-zero flows and cycle double coverings in graphs can
be found in the books of Zhang [Z], Jensen and Toft [JT] and the survey papers
of Jaeger [J3, J4], Jackson [Jac], and Seymour [Se3].

It is well-known that the smallest counterexample to the 5-Flow and CDC
Conjectures must be a snark, which is a nontrivial cubic (3-regular) graph
without an edge-3-coloring. By nontrivial we mean cyclically 4-edge-connected
and with girth (the length of the shortest circuit) at least 5. The term snark was
introduced by Gardner [Ga] borrowing this name from Lewis Caroll’s ballad
“The Hunting of the Snarks”. By Tait [Tai], the four-color theorem (proved
by Appel and Haken [AH] and Robertson, Sanders, Seymour, and Thomas
[RSST]) is equivalent to the statement that there exists no planar snark.

Construction of snarks is not an easy task. For instance the first nontrivial
infinite family of them was constructed in 1975 by Isaacs [I], though the first
snark, the Petersen graph, was known late in the 19th century (see Petersen
[P] and Kempe [Ke]). From this experience we might concede that snarks
are not common among cubic graphs. A result of Robinson and Wormald
[RW], stating that almost every cubic graph is hamiltonian, thus also edge-3-
colorable, supports this observation. Snarks are studied very intensively and
several methods have been developed for their constructions. The most inter-
esting were introduced in Adelson-Velskij and Titov [AVT], Goldberg [Gol],
Holyer [Hol], and Isaacs [I]. Some further constructions of snarks are surveyed
in Chetwynd and Wilson [CW], Watkins and Wilson [WW], Watkins [Wa], and
Cavicchioli, Meschiari, Ruini, and Spaggiari [CMRS].

By Celmins [Ce] (resp. Goddyn [Go1]), the smallest counterexample to the 5-
Flow (resp. CDC) Conjecture must be a cyclically 5-edge-connected snark with
girth at least 7 (resp. a snark with girth at least 8). This is very interesting,
because until recently, there have been known only snarks with girth at most
6. Jaeger and Swart [JS] conjectured that there is no snark with girth greater
than 6 (see also [CW], [WW], [Wa]).

By Holyer [Hol], the problem to determine whether a graph admits a nowhe-
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re-zero 4-flow is NP-complete. By Garey, Johnson and Stockmeyer [GJS] the
problem to determine whether a planar graph has a 3-coloring is NP-complete.
Since, by Tutte [Tu1], a graph is 3-colorable if and only if its dual has a nowhere-
zero 3-flow, we get that the problem to determine whether a graph admits a
nowhere-zero 3-flow is also NP-complete.

Nowhere-zero flows in graphs have some common features with the classical
flow model on directed graphs of Ford and Fulkerson [FF]. It is known that a
graph G has a nowhere-zero k-flow if and only if it has such a flow with values
1, . . . , k − 1 (with respect to a special orientation of G). But the theorem of
Hoffman [Hof] and Minty [Mi] (see also Zhang [Z]) says that a directed graph
G has a flow with values 1, . . . , k − 1 if and only if G has the output-input
ratio at most k− 1 (the maximum ratio between the number of edges directed
out from W and into W for a subset W of the set of vertices of G). Thus a
graph has a nowhere-zero k-flow if and only if it has an orientation with the
output-input ratio at most k − 1.

Generalizations of the classical flow model on directed graphs have been
introduced by Hassin [Has] and Lawler and Martel [LM1]. In these models,
capacity constraints are imposed by polymatroid rank functions on the sets of
edges directed into and out of each edge. A variety of classical optimization
problems can be formulated and solved in terms of these models, for example
the max-flow min-cut theorem of Ford and Fulkerson [FF], the abovementioned
theorem of Hoffman [Hof] and Minty [Mi], Hall’s theorem on distinct represen-
tatives [Ha1], Menger’s theorem [Me] on maximal cuts in graphs, and Dilworth’s
theorem [Di] on maximal antichains in partially ordered sets (see Lawler and
Martel [LM2] and Schrijver [Sc2]). It is also known that these theorems can be
presented as special cases of the Edmonds’ intersection theorem [Ed2], giving a
necessary and sufficient condition for two matroids to have a common indepen-
dent set of cardinality at least d. More sophisticated form of this theorem states
that the linear system describing the intersection polytope of two polymatroids
is totally dual integral (see Schrijver [Sc2, Sc3]). Note that polymatroids (in-
troduced by Edmonds [Ed2]) are polyhedra of nonnegative vectors bounded by
submodular functions. Generalized polymatroids (introduced independently
by Frank [Fr] and Kovalev [Ko]) are polyhedra bounded by sub- and super-
modular functions satisfying an additional condition. They are generalizations
of matroids and satisfy majority of their nice properties. A flow model us-
ing generalized polymatroids as set constraints was introduced by Lawler and
Martel [LM3]. Another general framework generalizing several constructions
of matroids are linking systems of Schrijver [Sc1] (introduced independently by
Kung [Ku]).

A result similar to the Edmonds’ intersection theorem was received by Davies
and McDiarmid [DM], who gave a necessary and sufficient condition for two
strongly base orderable matroids to have k disjoint common independent sets of
cardinality at least d. Strongly base orderable matroids form a proper subclass
of matroids and were introduced by Brualdi [Bru], Brualdi and Scrimger [BS],
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and Mason [Ma] (see also Welsh [We]).
More details about matroids, (generalized) polymatroids and submodular

functions are in [Ai], Frank and Tardos [FT], Fujishige [Fj], Lovász [Lo], Lovász
and Plummer [LP], Nemhauser and Wolsey [NW], Oxley [O], Schrijver [Sc2,
Sc3], and Welsh [We].

II. A Survey of The Results

In [1] we build general methods on constructing graphs without nowhere-zero
k-flows. We call such graphs k-snarks. First we study flows in multi-terminal
networks and generalize some classical results which have been known for flows
in graphs. This enables us to develop several methods on constructing k-snarks,
some of them having roots in constructions of snarks. This has many applica-
tions. We show that the 3-Flow Conjecture is equivalent to the statement that
every graph with at most three edge cuts of cardinality 3 has a nowhere-zero 3-
flow. Furthermore, in [3] we show that the 3-Flow Conjecture suffices to verify
for 5-edge-connected graphs.

In [2] (resp. [1]) we prove that if the 5-Flow (resp. Weak 3-Flow) Conjecture
is not true, then the problem to determine whether a bridgeless (resp. k-edge-
connected) graph has a nowhere-zero 5-flow (resp. 3-flow) is NP-complete.

In [4] we deal with class of graphs with maximum degree four. Let H be
the set of nonisomorphic simple graphs on four vertices (depicted in Fig. 2).
For every H′ ⊆ H, consider the family of graphs X (H′) such that a graph
G belongs to X (H′) if and only if each vertex of G has degree at most four,
and the neighborhood of each 4-degree vertex induces a graph isomorphic to a
member of the set H′. The main result of [4] is that, for a graph from X (H′),
the 3-coloring problem either is NP-complete, or can be solved in linear time.

In [5] we show that cubic graphs not containing a subgraph homeomorphic
to the Petersen graph have nowhere-zero 5-flows.

In [7] is indicated a construction of a new infinite family of cyclically 6-edge-
connected snarks.

In [8] we prove that the smallest counterexample to the 5-Flow Conjecture
must be cyclically 6-edge-connected snark.

Cyclically 5-edge-connected snarks with arbitrary large girth are constructed
in [5], thereby obtaining a counterexample to the conjecture of Jaeger and Swart
[JS].

Several families of snarks with some special properties are constructed in [1,
Chapter 10].

In [9] we construct snarks with a (dominating) circuit C so that no other
circuit C ′ satisfies V (C) ⊆ V (C ′). These snarks are interesting because the
Fixed Circuits CDC Conjecture and the conjecture of Fleischner [Fl2], that
every bridgeless graph has a CDC containing a fixed dominating circuit (the
equivalent form of the Sabidussi’s Compatibility Conjecture [Sa]), suffices to
verify for them.
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In [10] is proved that the conjecture of Fleischner [Fl1] (that every cyclically
4-edge-connected cubic graph has either an edge-3-coloring or a dominating
cycle) is equivalent to a conjecture of Thomassen [Th1] (that every 4-connected
line graph is hamiltonian).

In [11] is introduced oddness of a graph (a parameter expressing how far
a graph is from admitting a nowhere-zero 4-flow; for cubic graphs it is the
minimal number of odd circuits in a 2-factor). Oddness of a graph is always
even and is zero if and only if the graph has a nowhere-zero 4-flow. We show
that if a graph has oddness 2, then it has a 5-CDC.

In [12] is proved that every cyclically 4-edge-connected cubic graph has a
dominating circuit if and onlu if any two edges of a cyclically 4-edge-connected
cubic graph are contained in a dominating circuit.

In [13] we show that many conjectures and theorems about graphs could be
proved if one could show that they are true apart from some “errors”, provided
that the number of these errors grows asymptotically slower than the order of
these graphs. This study we begun in [1], where we introduce k-reluctance of
graphs, a parameter expressing how far a graph is from admitting a nowhere-
zero k-flow. We show that the 5-flow (resp. 3-flow) conjecture is equivalent
to the statement that 5-reluctance (resp. 3-reluctance) of bridgeless (resp. 4-
edge-connected) graphs growth assymtotically slower than the order of graphs.
Similar property holds for the conjectures of Fleischner [Fl1] and Thomassen
[Th1] (which we have mentioned by describing the results from [10]).

In [14] we introduce a flow model from combinatorial optimization using
quasi polymatroids as constraints for the flow conservation. Quasi polyma-
troids are polyhedra arising from generalized polymatroids after reflexions of
some coordinates. They are introduced in [14]. Abstract network flow model
is introduced in [15]. This has many common features with the flows used in
[1, 2, 3, 13] and is only formally different from the model of [14]. Using ab-
stract networks we introduce a general framework for various results regarding
constructions of matroids and (generalized) polymatroids – for instance, the ba-
sic operations on (generalized) polymatroids and constructions of transversal
matroids, gammoids, and their generalizations in [15].

In the last three papers [16, 17, 18] we study certain generalizations of the
Hall’s theorem [Ha1] of distinct representatives. Let G be a bipartite graph and
assume that for any vertex v of G a strongly base orderable matroid is given on
the set of edges incident to v. Call a subgraph of G a system of representatives of
G if the edge neighborhood of each vertex of this subgraph is independent in the
corresponding matroid. Two systems of representatives we call compatible if
they have no common edge. In [16] we give a necessary and sufficient condition
for G to have k pairwise compatible systems of representatives with at least d
edges. Unfortunately, this condition is not sufficient if we deal with arbitrary
matroids. In [17] and [18] are constructed latin (n×n× (n−d)-parallelepipeds
that cannot be extended to a latin cube of order n for any pair of integers d, n
where d ≥ 2 and n ≥ 2d + 1.
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III. Methods

We use methods from combinatorics and discrete mathematics, primarily
from graph theory.

Majority of the constructions of snarks and graphs without nowhere-zero k-
flows are based on superposition. This method is introduced in [1] and partially
also in [6, 7]. We apply this method and its variants in [1, 2, 3, 6, 7, 9, 10, 13].

A new linear algebra approach to nowhere-zero flow problems on graphs is
introduces in [8].

In papers [4, 5, 10, 11, 12, 13] are used methods from classical graph theory,
in particular we deal with colorings, paths, cycles, and 2-factors.

In [14, 15, 16] we apply combinatorial optimization, in particular theory of
matroids, polymatroids, generalized polymatroids, and submodular functions.

In [17, 18] are used methods of latin squares, in particular theorems about
extensions of incomplete latin squares.

In [2] and partially in [1] we use methods from complexity theory.

IV. Description of The Results

1. Nowhere-Zero Flows

1.1. Graphs, networks and flows. The notation introduced here more or
less coincides with the one from [1-15]. We use finite and unoriented graphs
with multiple edges and loops, unless stated otherwise. We use standard graph
theoretical terms which can be found in Bondy and Murty [BM].

If G is a graph, then V (G) and E(G) denote the sets of vertices and edges
of G, respectively. By a multi-terminal network, briefly a network, we mean
a pair (G,U) where G is a graph and U = {u1, . . . , un} is a set of pairwise
distinct vertices of G.

We postulate that with each edge of G there are associated two distinct arcs.
Arcs on distinct edges are distinct. If an arc on an edge is denoted by x the
other is denoted by x−1. If the ends of an edge e of G are vertices u and v, one
of the arcs on e is said to be directed from u to v and the other one is directed
from v to u. The two arcs on a loop, though distinct, are directed to the same
vertex. (In other words, each edge of G is duplicated and the two resulting
edges are directed oppositely.)

Let D(G) denote the set of arcs of G. Then |D(G)| = 2|E(G)|. If X ⊆ D(G),
then denote by X−1 = {x−1; x ∈ X}. By an orientation of G we mean every
X ⊆ D(G) such that X ∪X−1 = D(G) and X ∩X−1 = ∅. If W ⊆ V (G), then
ω+

G(W ) denotes the set of the arcs of G directed from W to V (G) \ W . We
write ω+

G(v) instead of ω+
G({v}).

Every Abelian group considered here is additive and has order at least two.
If G is a graph and A is an Abelian group, then an A-chain in G is a mapping
ϕ : D(G) → A such that ϕ(x−1) = −ϕ(x) for every x ∈ D(G). Furthermore,
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the mapping ∂ϕ : V (G) → A such that

∂ϕ(v) =
∑

x∈ω+
G(v)

ϕ(x) (v ∈ V (G))

is called the boundary of ϕ. The set of edges associated with the arcs of G
having nonzero values in ϕ is called the support of ϕ. An A-chain ϕ in G is
called nowhere-zero if its support equals E(G). If (G,U) is a network, then an
A-chain ϕ in G is called an A-flow in (G,U) if ∂ϕ(v) = 0 for every inner vertex
v of (G,U).

By a (nowhere-zero) A-flow in a graph G we mean a (nowhere-zero) A-flow
in the network (G, ∅) (i. e., the graph G is identified with the network (G, ∅)).
If k is an integer ≥ 2, then by a (nowhere-zero) k-flow ϕ in a network (G,U)
we mean a (nowhere-zero) Z-flow in (G,U) such that |ϕ(x)| < k for every
x ∈ D(G). Our concept of nowhere-zero flows in graphs coincides with the
usual definition of nowhere-zero flows as presented in Jaeger [J4], Younger [Y],
and Zhang [Z]. The only difference is that instead of a fixed (but arbitrary)
orientation of a graph G we use the set D(G) as a domain for a flow.

With every A-flow (resp. k-flow) in a network (G, U), where U = {u1, . . . ,
un}, is associated a characteristic vector χ(ϕ) = 〈z1, . . . , zn〉 so that zi = 0
if ∂ϕ(ui) = 0 (resp. ∂ϕ(ui) ≡ 0 mod k) and zi = 1 otherwise. The A-cha-
racteristic set χA(G,U) (resp. k-characteristic set χk(G, U)) of the network
(G,U) is the set of all characteristic vectors χ(ϕ) where ϕ is a nowhere-zero
A-flow in (G,U) (resp. a nowhere-zero integral k-flow in (G,U)). In the fol-
lowing statement, the classical equivalence results of Tutte [Tu1, Tu2, Tu3] are
generalized.

Theorem 1.1. [1] Let (G,U) be a network and k ≥ 2 be an integer. Then the
following statements are satisfied.

(1) (G,U) has a nowhere-zero k-flow if and only if (G,U) has a nowhere-
zero A-flow for any Abelian group A of order k.

(2) If (G,U) admits a nowhere-zero k-flow, then it admits a nowhere-zero
(k + 1)-flow.

(3) χk(G,U) = χA(G,U) for any Abelian group A of order k.
(4) χk(G,U) ⊆ χk+1(G,U).

By a k-snark we mean every network without a nowhere-zero k-flow (k ≥ 2).
We say that a graph G is a k-snark if (G, ∅) is a k-snark.

Networks (G,U) and (G′, U) are homeomorphic if they arise from the same
network after applying finitely many subdivisions (subdivision vertices are al-
ways assumed to be inner). In this case χk(G,U) = χk(G′, U) for every k ≥ 2.

1.2. Superposition. Suppose that we get a network (G′, U ′), U ′ = {u′1, . . . ,
u′n}, from a network (G,U), U = {u1, . . . , un}, by the following process. Take
a vertex w of G and replace it by a graph H disjoint from G so that each edge
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of G with one end (or two ends) in w gets a new end (or two new ends) from
V (H). Moreover, assume that u′i = ui if ui 6= w and u′i ∈ V (H) if ui = w.
Then (G′, U ′) is called a w-superposition (or a vertex superposition) of (G,U).

Suppose that we get a network (G′, U ′), U ′ = {u′1, . . . , u′n}, from a net-
work (G,U), U = {u1, . . . , un}, by the following process. Take a network
(H, {v1, v2}) disjoint from (G,U), delete from G an edge e with ends w1, w2

and identify the sets of vertices {w1, v1} and {w2, v2} to new vertices w′1 and
w′2, respectively. Furthermore, let u′i = ui if ui 6= w1, w2, and u′i = w′1 (or
w′2) if ui = w1 (or w2). Then (G′, U ′) is called an e-superposition (or an edge
superposition) of (G,U). This superposition is k-strong if H is a k-snark.

A network (G′, U ′), U ′ = {u′1, . . . u′n}, is a (k-strong) superposition of (G,U),
U = {u1, . . . un}, if there exist a sequence (G1, U1) = (G, U), (G2, U2), . . . ,
(Gr, Ur) = (G′, U ′) such that (Gj+1, Uj+1) is a vertex or (k-strong) edge su-
perposition of (Gj , Uj) for j = 1, . . . , r − 1. The following statement is a
cornerstone of our constructions.

Lemma 1.2. [1] Let (G′, U ′) be a k-strong superposition of (G,U), k ≥ 2.
Then χk(G′, U ′) ⊆ χk(G,U). In particular, if (G,U) is a k-snark, then so is
(G′, U ′).

Every superposition arising so that edges are replaced by k-snarks and ver-
tices by arbitrary graphs is k-strong. By Lemma 1.2, this technique produces
an infinite class of bridgeless k-snarks if we have at least one such a k-snark.

1.3. Snarks. An edge cut of a graph is called cyclic if after deleting its edges
we get at least two components having cycles. A graph is called cyclically k-
edge-connected if it does not have a cyclic edge cut of cardinality smaller than k.
Snarks are cyclically 4-edge-connected cubic graphs without an edge-3-coloring
and with girth (the length of the shortest circuit) at least 5. Note that a
cubic graph G has an edge-3-coloring if and only if it has a nowhere-zero 4-flow
(because nowhere-zero Z2 × Z2-flows in G coincides with an edge-3-coloring of
G by nonzero elements of the group Z2 × Z2). Similarly a cubic graph G has
an edge-3-coloring if and only if it has a 3-CDC. Using these facts we can show
that the 5-Flow and CDC Conjectures suffices to verify for snarks.

In [1, 6, 7] we have applied superposition and constructed new families of
snarks. For example take a circuit of length 6 in the Petersen graph P and
replace its edges by 6 copies of the flower snark I5 of Isaacs [I]. We get a
graph G1 indicated in Fig. 1. Replacing in G1 each vertex of valency 7 by
vertices of valencies 3, 2, and 2, we get a graph G2. By Lemma 1.2, G1 and
G2 are 4-snarks. Thus the graph G118 (homeomorphic with G2) is a cyclically
6-edge-connected snark of order 118.

Theorem 1.3. [1, 7] For every even n ≥ 118, there exists a cyclically 6-edge-
connected snark of order n.
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By a simple 5-cut snark we mean a cyclically 5-edge-connected snark with
girth 5 such that deleting any cyclic 5-edge cut we get at least one compo-
nent equal to a circuit. These snarks are interesting because, by Birkhoff [Bi],
the smallest counterexample to the four-color theorem must be a simple 5-cut
planar snark.

Theorem 1.4. [1] For every even n ≥ 90, there exists a simple 5-cut snark of
order n.

In [6] we disprove the conjecture of Jaeger and Swart [JS], that every snark
has girth at most 6.

Theorem 1.5. [6] There exists an infinite family of cyclically 5-edge-connect-
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ed snarks such that if a snark of this family has order n then its girth is at least
(4/3± o(1)) log2 n.

The k-reluctance of a network (G,U) is the smallest number of inner ver-
tices of (G,U) that can be added to U so that the resulting network admits a
nowhere-zero k-flow.

Theorem 1.6. [1] For every r > 0, there exists a cyclically 6-edge-connected
snark of order 118r and 4-reluctance at least r.

1.4. The 3-Flow Conjecture. It is well known that a cubic graph is a 3-
snark if and only if it is not bipartite (see, e. g., [J4]). The 3-Flow Conjecture
of Tutte is that every graph without 1- and 3-edge cuts has a nowhere-zero
3-flow. An equivalent form of this conjecture is that there does not exist a
4-edge-connected 3-snark (see, e. g., Jaeger [J4]). As pointed out before, this
conjecture is true for planar graphs (see Grötzsch [Gro] or Thomassen [Th2]).

Theorem 1.7. [1] The following statements are pairwise equivalent.
(1) Every graph without 1- and 3-edge cuts has a nowhere-zero 3-flow.
(2) Every bridgeless graph with at most three edge cuts of cardinality 3 has

a nowhere-zero 3-flow.
(3) Let G be a bridgeless graph with vertices v1, v2, v3 such that for any 3-

edge cut C of G each component of G−C has at least one vertex from
v1, v2, v3. Then G admits a nowhere-zero 3-flow.

Note that items (2) and (3) from Theorem 1.7 are satisfied for planar graphs,
as follows from results of Aksionov [Ak] and Borodin [Bo]. (As pointed out
before, item (1) holds by Grötzsch [Gr]).

Theorem 1.8. [3, 13] The following statements are pairwise equivalent.
(1) Every graph without 1- and 3-edge cuts has a nowhere-zero 3-flow.
(2) Every 5-edge-connected graph has a nowhere-zero 3-flow.
(3) Every 5-regular 5-connected hamiltonian simple graph has a nowhere-

zero 3-flow.

1.5. 3-Coloring of Graphs with Maximum Degree Four. By Brooks’
Theorem [Bro] every connected graph with the maximum vertex degree at most
three has a 3-coloring or is isomorphic to a complete graph on four vertices K4.
Hence, the decision problem, whether a given graph G has a 3-coloring, is trivial
for graphs with maximum degree three. On the other hand, the complexity of
the problem jumps from triviality to NP-completeness when we turn to the class
of graphs with maximum degree four (see [GJS]). To make the complexity gap
more precise, we study a family of graph classes that are intermediate between
these two extremes. In Fig. 2 are depicted all simple graphs on four vertices
and decomposed into two sets H1 and H2. For every H′ ⊆ H1 ∪ H2, consider
the family of graphs X (H′) such that a graph G belongs to X if and only if each
vertex of G has degree at most four, and the neighborhood of each 4-degree
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vertex induces a graph isomorphic to a member of the set H′. The main result
of the paper is following.

Theorem 1.9. [4] The problem to decide whether a graph from X (H′) is 3-
colorable is

(i) NP-complete if H′ ∩H1 6= ∅,
(ii) solvable in linear time if H′ ∩H1 = ∅.

1H

2 2KK1 K224 1K

NP−complete

Diamond

Claw 4P

Paw

C4

2H

P3K1

4K3KK1

Polynomial

Fig. 2

1.6. Flows and complexity. As pointed out in Chapter 1, the 5-Flow (resp.
Weak 3-Flow) Conjecture is that there does not exist a bridgeless 5-snark (resp.
no k-edge connected 3-snark for some k ≥ 4). In [1, 2] we have studied what
happens if these conjectures are not true.

Theorem 1.10. [2] If there exists a bridgeless graph without a nowhere-zero 5-
flow, then the problem to determine whether a (cubic) graph admits a nowhere-
zero 5-flow is NP-complete.

Theorem 1.11. [1] If there exists a k-edge-connected graph without a no-
where-zero 3-flow for some k ≥ 4, then the problem to determine whether a
k-edge-connected graph admits a nowhere-zero 3-flow is NP-complete.

1.7. Related topics. A circular k-flow ϕ in a network (G, U) (resp. a graph
G) is a nowhere-zero Zk-flow in (G,U) (resp. G) such that ϕ(x) ∈ {±1} for
every x ∈ D(G). The Circular Flow Conjecture of Jaeger [J2] is that every 4t-
edge-connected graph has a circular (2t+1)-flow. For t = 1 this is equivalent to
the 3-Flow Conjecture. For t = 2 Jaeger [J2] proved that the 5-Flow Conjecture
holds true if every 9-edge-connected graph has a circular 5-flow (see also Zhang
[Z]). Thus the 3- and 5-Flow Conjectures are implied by the following one.

Conjecture 1.12. [3] Every (4t+1)-edge-connected graph has a circular (2t+
1)-flow.

12



Let A be an Abelian group. We say that a graph G is A-connected if for any
mapping h : V (G) → A satisfying

∑
v∈V (G) h(v) = 0 there exists a nowhere-

zero A-chain ϕ in G such that ∂ϕ(v) = h(v) for every vertex v of G. This
concept was introduced in Jaeger, Linial, Payan, and Tarsi [JLPT], where is
proved that every bridgeless (resp. 4-edge-connected) graph is Z6-connected
(resp. Z4-connected), thereby generalizing the result of Seymour [Se2] (resp.
Jaeger [J1]). Jaeger et al. [JLPT] also found a 4-connected graph that is not Z3-
connected and conjectured that every 5-edge-connected graph is Z3-connected.
By Theorem 1.8, this conjecture, if true, would imply the 3-Flow Conjecture.

In [8] is proved the following theorem.

Theorem 1.13. [8] the smallest counterexample to the 5-Flow Conjecture is
a cyclically 6-edge-connected snark.

Since all cyclically 6-edge-connected snarks known until now have girth 6,
such a counterexample belongs to a class of graphs for which we do not know
whether it is empty.

2. Paths and Cycles

2.1. Cycle double covering. Let H be a cycle of a cubic graph G. Com-
ponents of H are circuits or isolated vertices. A component of H we shall call
odd if it is a circuit of odd length or an isolated vertex.

If G is a bridgeless cubic graph, then the minimal number of odd components
of a spanning cycle of G is called the oddness of G and denoted by ξ(G). Since
the number of vertices of a cubic graph is even then also the oddness of a
bridgeless cubic graph is always even. Finally, if G has a bridge, then define
ξ(G) = ∞. Oddness of a cubic graph G is 0 if and only if it is edge-3-colorable.
Thus the first nontrivial case is if ξ(G) = 2.

Theorem 2.1. [11] Let G be a bridgeless cubic graph with oddness at most 2.
Then G has a 5-CDC.

Tarsi [Ta] and Goddyn [Go3] proved that every bridgeless graph with a
Hamilton path has a 6-CDC. Using Theorem 2.1 we can improve this result.

Theorem 2.2. [11] Every bridgeless graph with a Hamilton path has a 5-CDC.

We can construct snarks with arbitrarily large oddness.

Theorem 2.3. [1] For every r > 0, there exists a cyclically 6-edge-connected
snark of order 118(2r − 1) and oddness at least 2r.

2.2. Dominating and hamiltonian circuits. A subgraph H of a graph G is
called dominating in G if every edge of G is incident to a vertex of H. We have
mentioned that the following conjecture of Fleischner [Fl1] is an interesting
approach towards a solution of the CDC Conjecture.

(a) Every cyclically 4-edge-connected cubic graph has either an edge-3-
coloring or a dominating circuit.
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A formally weaker conjecture was formulated by Ash and Jackson [AJ].

(b) Every cyclically 4-edge-connected cubic graph has a dominating cycle.

Fleischner and Jackson [FJ] have proved that (b) is equivalent to the following
known conjecture due to Thomassen [Th1].

(c) Every 4-connected line graph is hamiltonian.

In [10] we have proved that (a) and (b) are equivalent. Thus the following
holds.

Theorem 2.4. [10] The following statements are pairwise equivalent.

(1) Every cyclically 4-edge-connected cubic graph has either an edge-3-colo-
ring or a dominating circuit.

(2) Every cyclically 4-edge-connected cubic graph has a dominating circuit.
(3) Every 4-connected line graph is hamiltonian.

Note that by Ryjáček [Ry], (c) is equivalent to the conjecture of Matthews
and Sumner [MS], that every 4-connected graph without K1,3 as an induced
subgraph is hamiltonian.

A circuit C in G is called stable if there is no other circuit C ′ in G satisfying
V (C) ⊆ V (C ′). As pointed out in Chapter 1, the conjecture of Goddyn [Go2]
(resp. Fleischner [Fl2]), that given a circuit (resp. a dominating circuit) C in
a bridgeless graph G, there exists a CDC of G which includes C, suffices to
verify for snarks with a stable circuit (resp. a stable dominating circuit). We
have constructed such snarks in [9].

Theorem 2.5. [9] For every even k ≥ 82 there exists a snark of order n and
with a stable dominating circuit.

In [12] is proved the following result.

Theorem 2.6. [12] The following statements are equivalent:

(1) Every cyclically 4-edge-connected cubic graph has a dominating circuit.
(2) Any two edges of a cyclically 4-edge-connected cubic graph are contained

in a dominating circuit.

2.3. Sublinear defect property. Many conjectures and theorems about
graphs could be proved if one could show that they are true apart from some
errors, provided that the number of these errors grows asymptotically slower
than the order of these graphs. For example, the four-color theorem (proved
in [AH, RSST]) is equivalent to the statement that there are infinitely many
values of n such that, for every planar graph G with n vertices, all but o(n) of
the vertices of G can be properly colored with 4 colors.

A sequence {bn} of positive integers is called frequently strongly sublinear
(in abbreviation sublinear) if lim infn→∞ bn/n = 0.
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Theorem 2.7. [13] The following statements are pairwise equivalent.

(1) Every cyclically 4-edge-connected cubic graph without an edge-3-coloring
has a dominating cycle.

(2) Every 4-connected line graph is hamiltonian.
(3) There exists a sublinear sequence {bn} such that every cyclically 4-edge-

connected cubic graph of order 2n contains a dominating subgraph con-
sisting of at most bn vertex disjoint paths.

(4) There exists a sublinear sequence {bn} such that the vertices of every
4-connected line graph of order n can be covered by at most bn vertex
disjoint paths.

Similarly the following statements give formally weaker variants of the 5-
Flow and the (Weak) 3-Flow Conjectures (the k-reluctance is defined in Sub-
section 1.4).

Theorem 2.8. [1, 13] The following statements are pairwise equivalent.

(1) Every bridgeless graph has a nowhere-zero 5-flow.
(2) There exists a sublinear sequence {bn} such that every cyclically 5-edge-

connected cubic graph of order 2n has 5-reluctance at most bn.

Theorem 2.9. [13] Let k ≥ 4 and l = 2bk/2c + 1. Then the following state-
ments are pairwise equivalent.

(1) Every k-edge-connected graph has a nowhere-zero 3-flow.
(2) Every l-regular k-connected hamiltonian simple graph has a nowhere-

zero 3-flow.
(3) There exists a sublinear sequence {bn} such that every l-regular k-con-

nected hamiltonian simple graph of order 2n has 3-reluctance at most
bn.

The circular k-reluctance of a network (G,U) is the smallest number of inner
vertices of (G,U) that can be added to U so that the resulting network admits
a circular k-flow (defined in Subsection 1.6). The following statement gives
formally weaker variants of the Circular Flow Conjecture of Jaeger [J2] and
Conjecture 1.12.

Theorem 2.10. [13] Let k ≥ 4 and l = 2bk/2c + 1. Then the following
statements are pairwise equivalent.

(1) Every k-edge-connected graph has a circular (2t + 1)-flow.
(2) Every l-regular k-connected hamiltonian simple graph has a circular

(2t + 1)-flow.
(3) There exists a sublinear sequence {bn} such that every l-regular k-con-

nected hamiltonian simple graph of order 2n has circular (2t+1)-reluc-
tance at most bn.
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3. Flows in combinatorial optimization

3.1. Partial intersection of generalized polymatroids. If S is a finite set,
then denote by RS (resp. ZS) the set of real- (resp. integer)-valued functions
on S. If u ∈ RS and s ∈ S, then the sth coordinate of u is denoted by u(s).
Furthermore, if S′ ⊆ S, then the vector u′ ∈ RS′ such that u′(s) = u(s) for all
s ∈ S′ is called the restriction of u to S′. For two vectors u ∈ RS and v ∈ RT

with S ∩ T = ∅, their direct sum u⊕ v ∈ RS∪T is defined by

(u⊕ v)(s) =

{
u(s) if s ∈ S,

v(s) if s ∈ T.

We suppose that R∅ = {∅} and u⊕ ∅ = u.
Let ρ : 2S → R ∪ {∞}, σ : 2S → R ∪ {−∞} such that ρ(∅) = σ(∅) = 0 and

for every X, Y ⊆ S,

ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ),

σ(X) + σ(Y ) ≤ σ(X ∪ Y ) + σ(X ∩ Y ),

ρ(X)− σ(Y ) ≥ ρ(X \ Y )− σ(Y \X).

(The first two rows state that ρ and σ are submodular and supermodular, re-
spectively, and the last row states that ρ and σ are compliant.) Then the
set

P = {u ∈ RS ; σ(X) ≤ ∑
s∈Xu(s) ≤ ρ(X) for every X ⊆ S}

is called a generalized polymatroid (in abbreviation g-polymatroid) on the gr-
ound set S. Formally, we write P = (S, ρ, σ). If both ρ and σ are integer valued
(i.e., are mappings to Z ∪ {∞} and Z ∪ {−∞}, respectively), then P is called
integral.

Let ρ∞(∅) = σ∞(∅) = 0 and ρ∞(X) = ∞, σ∞(X) = −∞ for any ∅ 6= X ⊆ S.
Then (S, ρ∞, σ∞) = RS is called the free g-polymatroid on S.

If σ ≡ 0, then ρ is monotone and nonnegative (i.e., 0 ≤ ρ(X) ≤ ρ(Y ) if
X ⊆ Y ⊆ S) and P is called a polymatroid. If P is polymatroid, then we
formally write P = (S, ρ).

The following theorem brings together many results regarding constructions
of (generalized) polymatroids.

Theorem 3.1. [15] Let S, T be finite disjoint sets and P1 = (S ∪ T, ρ1, σ1),
P2 = (T, ρ2, σ2) be (integral) g-polymatroids. Suppose that ρ1(Y ) ≥ σ2(Y ),
ρ2(Y ) ≥ σ1(Y ) for every Y ⊆ T . Then there exists an (integral) g-polymatroid
P = (S, ρ, σ) such that for any X ⊆ S,

ρ(X) = min
Y⊆T

(
ρ1(X ∪ Y )− σ2(Y )

)
,

σ(X) = max
Y⊆T

(
σ1(X ∪ Y )− ρ2(Y )

)
,
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and an (integral) vector u ∈ RS is from P iff there exists an (integral) vector
v ∈ P2 so that u⊕ v ∈ P1.

P is called the partial intersection of P1 and P2.

3.2. Abstract networks. For every U ⊆ V (G), ∆U denotes the set of
arcs directed from V (G) \ U to U (we write ∆v if U = {v}). Note that
∆U = (ω+

G(U))−1, where ω+
G(W ) was defined in Subsection 1.1. An abstract

g-polymatroidal flow network N (in abbreviation an abstract network) is a loop-
less graph G where each vertex v of G is accompanied with a g-polymatroid
Pv = (∆v, ρv, σv). N is called integral if every Pv is integral. An R-chain f
in G is called a flow in N if for every vertex v of G, the restriction of f to
∆v is from Pv, (i.e., σv(X) ≤ ∑

s∈X f(s) ≤ ρv(X) for every X ⊆ ∆v). If a
flow in N is integer valued, then it is called integral. A U -value of a chain f is∑

s∈∆U
f(s) for every U ⊆ V (G).

By a U -cut of N we mean a triple (U,A, B) so that A = A′ \ ∆−1
U , B =

B′ \∆U , where the couple A′, B′ is a partition of D(G) into two sets satisfying
(A′)−1 = A′, (B′)−1 = B′. The upper capacity of the U -cut (U,A, B) is

cup(U,A, B) =
∑

v∈U

ρv(∆v ∩A)−
∑

v∈V (G)\U
σv(∆v ∩B).

The lower capacity of the U -cut (U,A,B) is

clow(U,A, B) =
∑

v∈U

σv(∆v ∩A)−
∑

v∈V (G)\U
ρv(∆v ∩B).

Clearly, cup(U,A, B) = −clow(V (G) \ U,B, A). Note that we allow U , A or B
to be empty.

The next theorem gives a necessary and sufficient condition for an abstract
network to admit a flow. Theorem 3.3 is the max-flow min-cut theorem for
abstract networks.

Theorem 3.2. [15] Let N be an (integral) abstract network on a loopless graph
G. Then the following conditions are pairwise equivalent:

(1) N admits an (integral) flow.
(2) Every V (G)- and ∅-cut of N has nonnegative upper capacity.
(3) Every V (G)- and ∅-cut of N has nonpositive lower capacity.

Theorem 3.3. [15] Let N be an abstract network on a loopless graph G ad-
mitting a flow and U ⊆ V (G). Then the maximal (resp. minimal) U -value of
a flow in N is equal to the minimal upper (resp. maximal lower) capacity of a
U -cut in N . Furthermore, if N is integral and the maximal (resp. minimal)
U -value of N is finite, then there exists integral flow in N with the maximal
(resp. minimal) U -value.
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Suppose that N is an abstract network on a loopless graph G, U ⊆ V (G),
and f is a flow in N . Then the restriction of f to ∆U is called a U -transversal
of N . The set of all U -transversals of N is called a U -gammoid of N . (If
U = {v}, then we speak about a v-transversal and a v-gammoid of N .) The
following theorem generalizes the known result of Edmonds and Fulkerson [EF],
that transversals of a finite system of sets form a matroid.

Theorem 3.4. [15] Let N be an (integral) abstract network on a loopless graph
G with a collection of g-polymatroids Pv = (∆v, ρv, σv) (v ∈ V (G)). Suppose
that N admits a flow and has a vertex t such that Pt = R∆t . Then the t-
gammoid of N is an (integral) g-polymatroid P = (∆t, ρ, σ) such that

ρ(X) = min
Z⊆E(G−t)

∑

v∈V (G−t)

−σv(∆v ∩ (X−1 ∪D(Z))),

σ(X) = max
Z⊆E(G−t)

∑

v∈V (G−t)

−ρv(∆v ∩ (X−1 ∪D(Z)))

for any X ⊆ ∆t. Furthermore, if N is integral, then every integral t-transversal
of N can be extended to an integral flow in N .

Theorems 3.1 and 3.4 are equivalent and both can serve as a general frame-
work for various constructions of (generalized) polymatroids and matroids. We
give a simple example. Let P1 = (S1, ρ1, σ1) and P2 = (S2, ρ2, σ2) be two g-
polymatroids, S1 ∩ S2 = ∅. Then P1 ⊕ P2 = {u ⊕ v;u ∈ P1,v ∈ P2} is also a
g-polymatroid called the direct sum of P1 and P2. It can be expressed in frame-
work of Theorem 3.4 as follows. Take a graph G with vertices u, v, t so that
u and v are not adjacent and u and t (resp. v and t) are joined by |S1| (resp.
|S2|) parallel edges. Take an Abstract network N ′ on G so that Pu and Pv are
identified with −P1 = (S1,−σ1,−ρ1) and −P2 = (S2,−σ2,−ρ2), respectively,
and Pt = R∆t . Then the t-gammoid of N ′ is in fact P1 ⊕ P2.

The following theorem describes the behaviour of U -gammoids.

Theorem 3.5. [15] Let N be an (integral) abstract network on a loopless graph
G, U ⊆ V (G) and W = V (G) \U . Then the U -gammoid of N is the (integral)
polyhedron arising as intersection of two generalized polymatroids. Further-
more, if N is integral, then any integral U -transversal can be extended to an
integral flow from N .

Let N be an abstract g-polymatroidal flow network on a loopless graph G.
Then restricting our attention only to an orientation of G, we get a flow model
from [14]. This is called a quasi-polymatroidal flow network on G. This flow
models is more similar to the models of Hassin [Has] and Lawler and Martel
[LM1, LM3], but the formulation of Theorem 3.4 seems to be better for the
model from [15].
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3.3. Compatible systems of representatives. If P = (S, ρ) is an integral
polymatroid such that ρ(X) ≤ |X| for every X ⊆ S, then P is called a matroid
on S. It is usually identified with the system of sets M = {X ⊆ S; ρ(X) = |X|}
(see, e.g., Aigner [Ai], Oxley [O], Welsh [We]). We also write M = (S, ρ).
Subset X of S satisfying ρ(X) = |X| is called independent in M . Maximal
independent sets in M are called bases of M . It is known that all bases of a
matroid have the same cardinality. If G is a graph, then the edge sets of all
subforests of G form a matroid on E(G), called the cycle matroid of G.

We say that a matroid M is strongly base orderable if for any two bases
B1, B2 there exists a bijection π : B1 → B2 such that for all subsets A ⊆ B1

(B1 \ A) ∪ π(A) is a base of M . It is known that the cycle matroid of a
graph is strongly base orderable if and only if it does not contain a subgraph
homeomorphic with K4.

Let A = (At : t ∈ T ) be a finite family of subsets of a finite set S. Then
X = (Xt : t ∈ T ) is a subsystem of A if Xt ⊆ At for every t ∈ T . If s ∈ S then
denote by Xs = {t ∈ T ; s ∈ Xt} (⊆ T ). The length of X is the value

∑
t∈T |Xt|.

Two subsystems X = (Xt : t ∈ T ) and X ′ = (X ′
t : t ∈ T ) are called compatible

if Xt ∩X ′
t = ∅ for every t ∈ T .

Let MS = (Ms : s ∈ S) and MT = (Mt : t ∈ T ) be families of matroids,
Ms = (T, ρs) for every s ∈ S, and Mt = (S, ρs) for every t ∈ T . Then a
subsystem X is called an (MS ,MT )-system of representatives of A if Xt and
Xs are independent in Mt and Ms for every t ∈ T and s ∈ S, respectively.

Theorem 3.6. [16] A has k pairwise compatible (MS ,MT )-systems of repre-
sentatives of length d if and only if any two subsystems X = (Xt : t ∈ T ) and
Y = (Yt : t ∈ T ) of A satisfy

k

(∑

s∈S

ρs(Xs) +
∑

t∈T

ρt(Yt)

)
+

∑

t∈T

|At \ (Xt ∪ Yt)| ≥ kd.

Theorem 3.6 can be also expressed in language of an integral abstract net-
work on a bipartite graph G where Pv is a strongly base orderable matroid for
every v ∈ V (G).

Let Uk,S be the system of subsets of S with cardinality at most k. Then these
form a strongly base orderable matroid on S. Suppose that M is a matroid
on T and Ms = M for every s ∈ S and Mt = U1,S for every t ∈ T , then an
(MS ,MT )-system of representatives is called an M -system of representatives.

Let M = (T, ρ) be a matroid. Then the covering theorem of Edmonds [Ed1]
says that M has k independent sets whose union is T if and only if k ·ρ(J) ≥ |J |
for every J ⊆ T . A stronger theorem holds for strongly base orderable matroids.

Theorem 3.7. [16] Let S and T be finite sets and M = (T, ρ) be a strongly
base orderable matroid. Then the following conditions are pairwise equivalent.

(1) M has k independent sets whose union is T .
19



(2) k · ρ(J) ≥ |J | for every J ⊆ T .
(3) Every family C = (Ct : t ∈ T ) of subsets of S such that |Ct| = k has an

M -system of representatives.
(4) Every family C = (Ct : t ∈ T ) of subsets of S such that |Ct| = k has k

pairwise compatible M -systems of representatives.

By Edmonds [Ed1], items (1)–(3) from Theorem 3.7 are pairwise equivalent
for arbitrary matroid M on T . We have conjectured in [16] that also Theorem
3.7 holds true for every matroid.

Note that a U1,T -system of representatives of A is a system of distinct repre-
sentatives. Thus Theorem 3.6 generalizes the Hall’s theorem [Ha1] on distinct
representatives.

3.4. Latin parallelepipeds and cubes. By a latin (n × k)-rectangle we
mean an n×k array A = [ai,j ], 1 ≤ i ≤ n, 1 ≤ j ≤ k such that ai,j ∈ {1, . . . , n}
and if ai,j = ai′,j′ then i 6= i′ and j 6= j′. In the case n = k, A is called a latin
square of order n.

Let A(1) = [a(1)
i,j ], A(2) = [a(2)

i,j ], . . . , A(k) = [a(k)
i,j ] be latin squares of order n.

The k-tuple A = (A(1), A(2), . . . , A(k)) is called a latin n× n× k-parallelepiped
if the elements a

(1)
i,j , a

(2)
i,j , . . . , a

(k)
i,j are pairwise distinct for every 1 ≤ i, j ≤ n.

In the case k = n, A is called a latin cube of order n.
One of the best known property of latin squares is that any latin (n × k)-

rectangle can be extended to a latin square of order n. This was proved by
M. Hall [Ha2], using the theorem of distinct representatives of P. Hall [Ha1].
With respect to this fact it is natural to ask the following question: Given a
latin (n× n× k)-parallelepiped, do there exist n− k latin squares which may
be added to the given parallelepiped to form a latin cube? This problem was
posed in the Sixth Hungarian Colloqium on Combinatorics, 1981. In contrast
with the classical case there are known constructions of latin (n×n× (n− d))-
parallelepipeds that cannot be extended to a latin cube of order n. These
constructions have been presented in Horák [Hor] (for d = 2 and n = 2k,
k ≥ 3) and in Fu [Fu] (for d = 2 and n = 6 or n ≥ 12). We have generalized
these results.

Theorem 3.8. [17, 18] For every d ≥ 2 and n ≥ 2d + 1 there exists a latin
(n×n× (n− d))-parallelepiped that cannot be extended to a latin cube of order
n.

V. Conclusions

Results presented here belong to basic research in mathematics. The most
interesting results are [1], [6] and [8]. In [1] is introduced a general framework
for constructions of graphs without nowhere-zero flows. The main important
technique is superposition, which is used in [6] for constructions of snarks with
arbitrarily large girth. Similar methods can be used by constructing nonhamil-
tonian cubic graphs and other problems from graph theory and combinatorics.
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Paper [8] contains a new approach for study of flow and coloring problems.
This method is based on contraction-deletion principle and uses methods from
linear algebra. We see potential for further development of these methods.
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Summary

This thesis consists from author’s 18 papers published in mathematical jour-
nals. The papers deal with several aspects of flows in graphs. The results are
divided into three parts. In the first part we deal with snarks (nontrivial cubic
graphs without 3-edge-coloring) and nowhere-zero group- and integer-valued
flows in graphs. The second part contains results about path, circuits, cycle
double coverings of graphs and related problems. The third part is devoted
to generalization of classical flows in networks and some relative areas from
transversal theory and latin squares.

We build general methods on constructing graphs without nowhere-zero k-
flows. We call such graphs k-snarks. We study flows in multi-terminal networks
and generalize some classical results which have been known for flows in graphs.
This enables us to get new results about k-flows, k-snarks and snarks.

We prove that the 3-Flow Conjecture suffices to verify for 5-edge-connected
graphs and that the smallest counterexample to the 5-Flow Conjecture must be
cyclically 6-edge-connected snark. We show that if there exists a bridgeless 5-
snark (resp. k-edge-connected 3-snark), then the problem to determine whether
a bridgeless (resp. k-edge-connected) graph has a nowhere-zero 5-flow (resp. 3-
flow) is NP-complete. We prove that cubic graphs not containing a subgraph
homeomorphic to the Petersen graph have nowhere-zero 5-flows.

We construct snarks with arbitrary large girth, thereby obtaining a coun-
terexample to the conjecture of Jaeger and Swart. We introduce constructions
of a new infinite families of cyclically 6-edge-connected snarks. We also con-
struct families of snarks with high degree of “uncolorability” or having other
special properties.

We study 3-coloring problem for some classes of graphs with maximal degree
four. We show that this problem is NP-complete for some classes but can be
solved in linear time for others.

We also deal with conjectures about circuits in graphs. We show that every
cyclically 4-edge-connected cubic graph has a dominating circuit (i.e., circuit
whose vertices are incident with all edges of the graph) if and only if any two
edges of a cyclically 4-edge-connected cubic graph are contained in a dominating
circuit. We prove that every 4-connected line graph is hamiltonian if and only
if every cyclically 4-edge-connected cubic graph has either an edge-3-coloring or
a dominating cycle. We construct snarks with a stable dominating circuit (that
means there is no other circuit covering all its vertices). We show that if a graph
has either oddness 2 or a Hamilton path, then it has a cycle double covering
consisting from 5 cycles. We prove that many conjectures and theorems about
graphs could be proved if one could show that they are true apart from some
“errors”, provided that the number of these errors grows asymptotically slower
than the order of these graphs.

We introduce a flow model from combinatorial optimization using quasi
polymatroids as constraints for the flow conservation. Quasi polymatroids
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are polyhedra arising from generalized polymatroids after reflexions of some
coordinates. We also introduce abstract network flow model which is only for-
mally different from the first one, and has many common features with the
flow models used by studying k-snarks. Using abstract networks we introduce
a general framework for various results regarding constructions of matroids and
(generalized) polymatroids – for instance, the basic operations on (generalized)
polymatroids and constructions of transversal matroids and gammoids.

We also study certain generalizations of the Hall’s theorem of distinct rep-
resentatives and construct latin parallelepipeds that cannot be extended to a
latin cube.
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