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Resumé

Konvekce a difúze jsou základńı fyzikálńı mechanismy, které ovlivňuj́ı či
př́ımo určuj́ı mnoho r̊uzných proces̊u v př́ırodě, vědě a technice. Mate-
matické modely popisuj́ıćı takovéto procesy jsou obvykle natolik kom-
plikované, že je neńı možno vyřešit analyticky. Proto je potřeba př́ıslušné
neznámé veličiny aproximovat pomoćı numerických metod. V typických
aplikaćıch, kde konvekce převažuje nad difúźı, však standardńı numerické
postupy selhávaj́ı, nebot’ přibližná řešeńı jsou zkreslena nefyzikálńımi
oscilacemi.

Předložená disertace je věnována vývoji a analýze r̊uzných postup̊u
v metodě konečných prvk̊u pro numerické řešeńı skalárńı rovnice konvek-
ce–difúze–reakce. Zkoumáńı numerických metod pro tuto modelovou
úlohu je zásadńı pro úspěšný vývoj přesných, robustńıch a efektivńıch
postup̊u pro numerické řešeńı komplikovaněǰśıch úloh, které se vyskytuj́ı
v aplikaćıch, avšak je d̊uležité i samo o sobě. Numerické řešeńı konvek-
tivně dominantńıch problémů konvekce–difúze představuje stále výzvu,
i přes v́ıce než čtyři desetilet́ı intenzivńıho výzkumu.

Předložená disertace obsahuje řadu př́ıspěvk̊u k numerickému řešeńı
konvektivně difúzńıch problémů, které jej́ı autor vytvořil během uplynu-
lých dvanácti let. Mezi nejd̊uležitěǰśı výsledky patř́ı: vylepšená varianta
Mizukamiho–Hughesovy metody, přehled a systematické srovnáńı metod
potlačuj́ıćıch nefyzikálńı oscilace podél mezńıch vrstev, nová definice sta-
bilizačńıho parametru metody SUPG na výtokových hranićıch, obecný
rámec pro adaptivńı optimalizaci parametr̊u ve stabilizovaných meto-
dách, nové výsledky o stabilitě diskretizaćı v metodě konečných prvk̊u,
zobecněńı metody lokálńıch projekćı umožňuj́ıćı použit́ı projekčńıch pros-
tor̊u definovaných na překrývaj́ıćıch se množinách, analýza nelineárńıch
stabilizaćı v metodě lokálńıch projekćı, prvńı analýza schémat s al-
gebraickou korekćı tok̊u, vyvinut́ı a analýza prvńıho schématu s alge-
braickou korekćı tok̊u pro rovnice konvekce–difúze–reakce splňuj́ıćıho
diskrétńı princip maxima a zachováńı linearity na obecných śıt́ıch.
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Résumé

Convection and diffusion are basic physical mechanisms which influence
or even determine many various processes in the nature, science and
technology. Mathematical models describing such processes are usually
too complicated to be solved analytically. Therefore, it is necessary to
approximate the respective unknown quantities by means of numerical
methods. However, in typical applications where convection dominates
diffusion, standard numerical techniques fail since the approximate so-
lutions are usually polluted by spurious oscillations.

The doctoral thesis is devoted to the development and analysis of
various finite element techniques for the numerical solution of the scalar
convection–diffusion–reaction equation. Investigations of numerical tech-
niques for this model problem are crucial for a successful development
of accurate, robust and efficient approaches for the numerical solution
of more complicated problems arising in applications but they are im-
portant also at its own. Despite more than four decades of intensive
research, the numerical solution of convection-dominated convection–
diffusion problems is still a challenge in general.

The doctoral thesis presents several contributions to the numerical
solution of convection–diffusion problems made by the author during
the past twelve years. The most important ones include: an improved
variant of the Mizukami–Hughes method, a review and systematic com-
parison of spurious oscillations at layers diminishing (SOLD) methods,
a new definition of the SUPG stabilization parameter at outflow bound-
aries, a general framework for an adpative optimization of parameters
in stabilized methods, new results on the stability of finite element dis-
cretizations, a generalization of the local projection stabilization allowing
to use projection spaces defined on overlapping sets, an analysis of non-
linear local projection stabilizations, the first analysis of algebraic flux
correction schemes, and the development and analysis of the first flux
correction scheme for convection–diffusion–reaction equations satisfying
the discrete maximum principle and linearity preservation on general
meshes.
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1 Introduction

These theses summarize the contents of the doctoral thesis Finite El-
ement Techniques for Convection–Diffusion Problems submitted to the
Czech Academy of Sciences in partial fulfilment of the requirements for
the scientific degree of Doctor Scientiarum. The doctoral thesis is a
commented collection of 16 selected publications of the author which
reflect his research on finite element techniques for convection–diffusion
problems during the past twelve years. These publications are listed
in Section 10 and they are referred to by [D1], [D2],. . . , [D16] in these
theses.

The distribution of physical quantities in various physical, technical,
biological and other processes is driven by basic physical mechanisms
which are diffusion, convection, and reaction. Often, the diffusion is
very small in comparison with the convection or reaction. This causes
that the distribution of the respective quantity comprises so-called lay-
ers, which are narrow regions where the quantity changes abruptly. It
is well known that standard discretizations then provide approximate
solutions polluted by spurious oscillations unless the underlying mesh
resolves the layers, see, e.g., the monograph [51]. Consequently, special
discretization techniques (so-called stabilized methods) have to be ap-
plied which always introduce a certain amount of artificial diffusion that
should suppress the spurious oscillations but also typically increases the
smearing of the layers. Therefore, it is usually still a challenge to obtain
an accurate approximate solution, despite the huge amount of research
on appropriate discretizations during the last four decades.

The simplest model for the above-mentioned class of problems is a
scalar steady-state convection–diffusion–reaction equation

(1) −ε∆u+ b · ∇u+ c u = f in Ω ,

where Ω ⊂ Rd, d ∈ {1, 2, 3}, is a bounded domain, ε > 0 is a constant
diffusion parameter, b is a convection field, c is a reaction coefficient,
and f is a term describing sources and sinks. The unknown function u
represents, e.g., the temperature in modeling the energy balance, or the
concentration or mass fraction in modeling mass balances. Throughout
these theses, we shall suppose that the data satisfy the usual technical
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assumption

(2) σ := c− 1

2
div b ≥ 0 .

To obtain a well-posed problem, (1) has to be equipped with appro-
priate boundary conditions on the boundary ∂Ω of Ω. To simplify the
presentation of numerical methods in these theses, we shall consider

(3) u = 0 on ∂Ω .

Nevertheless, the properties of the methods will be illustrated by an
example with nonhomogeneous Dirichlet boundary conditions. The ex-
tension of the methods to this case is straightforward. More general
boundary conditions can be found in the publications contained in the
doctoral thesis.

To solve the equation (1) numerically, various methods can be ap-
plied: the finite difference method, finite volume method, finite element
method, discontinuous Galerkin method, or spectral method, to name
the most common ones. For each of these methods, many contributions
on its application to the numerical solution of (1) can be found in the
literature. The doctoral thesis is devoted exclusively to the application
of the finite element method which we prefer because of its flexibility
in treating complex geometries, easy incorporation of natural boundary
conditions and suitability for theoretical investigations due to its func-
tional analytical setting based usually on Hilbert spaces.

It should be emphasized that the model (1) as a stand-alone equation
is considered because, on the one hand, it comprises the effects of diffu-
sion, convection, and reaction and, on the other hand, it simplifies the
analysis of numerical techniques for its solution. Nevertheless, also for
this simplest available model, there are many discretizations the analy-
sis of which still remains an open problem. In applications, equations
of type (1) are often a part of complex systems of equations. For exam-
ple, they may be coupled with the Navier–Stokes equations describing
the convection b which is, in turn, influenced by the temperature or
concentrations determined by equations of type (1).

This work is mainly devoted to studies of numerical techniques for
the equation (1) in the convection-dominated regime characterized by
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the conditions ε � ‖b‖L∞ and ‖c‖L∞ . ‖b‖L∞ , which is the case usu-
ally encountered in applications. As already mentioned, the main feature
of solutions in this regime is the appearance of layers, i.e., narrow re-
gions with large gradients of the solution. Then the standard Galerkin
finite element method applied to (1) (see Section 2), which corresponds
to central finite differencing for constant data and suitable meshes, leads
to heavily oscillating solutions unless the layers are resolved by the re-
spective mesh. Therefore, much research has been devoted to the devel-
opment of numerical methods using anisotropic layer-adapted meshes.
Such meshes can be defined either a priori (see, e.g., [44, 51]) or a pos-
teriori by means of adaptive techniques (see, e.g., [1, 52]). Nevertheless,
since the layer width is proportional to

√
ε or even ε (depending on the

type of layer), the geometric resolution of the layers is often not feasible
due to high memory and computational time requirements. Therefore,
it is important to develop numerical methods providing sufficiently ac-
curate results also on meshes which are coarse in comparison with the
width of the layers. This is the main aim of this work.

To suppress the oscillations present in Galerkin solutions obtained
on coarse meshes, various stabilized methods have been developed, see,
e.g., [51, 50, 31] for reviews. The stabilizing effect of these approaches
can be characterized by the artificial diffusion they add to the underly-
ing Galerkin discretization. To diminish the spurious oscillations to a
sufficient extent, the artificial diffusion has to be sufficiently large. How-
ever, to avoid an excessive smearing of the layers, the artificial diffusion
is not allowed to be too large. Consequently, the design of a proper sta-
bilization is very difficult. Despite more than four decades of research,
there is so far no efficient discretization for (1) available which would
produce accurate numerical solutions (in particular, with sharp layers at
correct positions) without unphysical features (e.g., negative concentra-
tions). This statement is supported by theoretical and numerical studies
in, e.g., [3, 29, 30] and [D3,D4].

2 Galerkin method and SUPG method

The Galerkin finite element discretization of the problem (1), (3) defines
an approximate solution uh from a finite element space Vh approximating
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the Sobolev space H1
0 (Ω) as the solution of the variational problem

(4) a(uh, vh) = (f, vh) ∀ vh ∈ Vh ,

where

a(uh, vh) = ε (∇uh,∇vh) + (b · ∇uh, vh) + (c uh, vh)

and (·, ·) denotes the inner product in L2(Ω) or L2(Ω)d. As we already
mentioned in the preceding section, this discretization is not appropriate
in the convection-dominated regime and has to be stabilized.

One of the most successful linear stabilizations is the streamline up-
wind Petrov–Galerkin (SUPG) finite element method [25, 12] which con-
sistently introduces artificial diffusion along streamlines. It combines
good stability properties with a high accuracy away from layers. Be-
cause this method will be frequently discussed throughout these theses,
it will be now formulated for the equation (1) in detail.

The SUPG method adds a weighted residual of (1) to the Galerkin
method and defines the approximate solution uh ∈ Vh by

a(uh, vh) +
∑

T∈Th

(−ε∆uh + b · ∇uh + c uh − f, τ b · ∇vh)T(5)

= (f, vh) ∀ vh ∈ Vh ,

where Th is a triangulation of Ω used for defining the finite element
space Vh, τ is a nonnegative stabilization parameter (typically constant
on each T ∈ Th), and (·, ·)T denotes the inner product in L2(T ) or
L2(T )d. The additional term is written as a sum of local contributions
since the operator ∆ usually cannot be applied to uh globally. The
parameter τ determines the amount of the artificial diffusion added by
the SUPG method to the Galerkin discretization. For linear or bilinear
finite elements, it is often defined, on any element T ∈ Th, by the formula

(6) τ |T =
hT
2 |b|

(
cothPeT −

1

PeT

)
with PeT =

|b|hT
2 ε

,

which originates from the one-dimensional case. The notation PeT is
used for the Péclet number, which determines whether the problem is
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Figure 1: Exact solution of Example 1 (left) and its SUPG approxima-
tion (right) (Fig. 5 from [D4]).

locally convection-dominated or diffusion-dominated, and hT is the ele-
ment diameter in the direction of the convection vector b. We refer to
[D3] for various justifications of this formula and for a precise definition
of hT . If τ satisfies suitable assumptions, one can prove the stability and
an error estimate for (5) with respect to the norm

(7) ‖v‖SUPG =
(
ε |v|21,Ω + ‖σ1/2 v‖20,Ω + ‖τ1/2 b · ∇v‖20,Ω

)1/2

,

where we use σ from (2), |·|1,Ω is the usual seminorm in H1
0 (Ω) and ‖·‖0,Ω

is the norm in L2(Ω). The SUPG method represents a significant im-
provement in comparison with the Galerkin method, nevertheless, since
it is not a monotone method, it may compute solutions suffering from
spurious oscillations in layer regions. Let us demonstrate it by means of
the following classical test problem.

Example 1 The equation (1) is considered with Ω = (0, 1)2, ε = 10−8,
b = (cos(−π/3), sin(−π/3))T , c = 0, f = 0, and the boundary condition
u = ub on ∂Ω with

ub(x, y) =

{
0 for x = 1 or y ≤ 0.7,
1 else.

The discontinuity in the boundary condition at the point (0, 0.7) is
propagated by the convection into the interior of the computational do-
main, which creates an interior layer. Moreover, the boundary condition
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Figure 2: Type of the meshes used in the most computations (Fig. 3a
from [D1]).

u = 1 is propagated to a boundary part where u = 0, which leads to
two exponential boundary layers. The exact solution of this problem is
shown in Fig. 1 (left). All numerical results presented in Sections 2–6
were computed using continuous piecewise linear functions on a mesh
of the type depicted in Fig. 2. The SUPG solution for the stabilization
parameter given in (6) can be seen in Fig. 1 (right). One can observe
spurious oscillations along the interior layer and one of the boundary
layers.

3 Mizukami–Hughes method

The Mizukami–Hughes method is an interesting approach proposed in
[49] for a two-dimensional convection–diffusion equation (i.e., (1) with
c = 0 and d = 2) discretized using a finite element space Vh consisting of
continuous piecewise linear functions over a triangular mesh. To formu-
late the method, we denote by ϕ1, . . . , ϕM the standard piecewise linear
basis functions of the space Vh. Then the Galerkin discretization (4) can
be written in the form

ε (∇uh,∇ϕi) + (b · ∇uh, ϕi) = (f, ϕi) , i = 1, . . . ,M .

The Mizukami–Hughes method replaces the test functions ϕi by func-
tions ϕ̃i obtained by adding suitable constants to ϕi on the triangles
forming its support. Then the approximate solution uh ∈ Vh is defined
by

ε (∇uh,∇ϕi) + (b · ∇uh, ϕ̃i) = (f, ϕ̃i) , i = 1, . . . ,M .
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Thus, it is a Petrov–Galerkin method like the SUPG method. It is
assumed that b is constant on each element of the triangulation; in
practice, b is replaced by a piecewise constant approximation.

The idea of the Mizukami–Hughes method is to define the constants
in the definition of the test functions ϕ̃i in such a way that the lo-
cal finite element matrices corresponding to the convective term are of
nonnegative type, i.e., their row sums are nonnegative and off-diagonal
entries are nonpositive. Whether this is possible depends on the orienta-
tion of b with respect to the given element of the triangulation. However,
Mizukami and Hughes made the important observation that u still solves
the equation (1) if one replaces b by any function b̃ such that b̃ − b is
orthogonal to ∇u. This suggests to define the constants in the definition
of the functions ϕ̃i in such a way that the local convection matrix is of
nonnegative type for b replaced by a suitable function b̃, which is always
possible. Since ∇u is not known a priori, one obtains a nonlinear prob-
lem where the constants in the definition of ϕ̃i depend on the unknown
approximate solution uh.

The Mizukami–Hughes method is probably the first nonlinear method
for (1) satisfying the discrete maximum principle. Like for many other
methods proposed later, see, e.g., [14, 15, 4], this property is proved only
for weakly acute meshes, i.e., the magnitude of all angles in the triangles
of the mesh is less than or equal to π/2. Nevertheless, it is also possible
to derive methods for which the discrete maximum principle holds on
arbitrary meshes, see Section 8. The discrete maximum principle is an
important property which ensures that no spurious oscillations will ap-
pear, not even in the vicinity of sharp layers. In contrast to many meth-
ods satisfying the discrete maximum principle, the Mizukami–Hughes
method does not lead to a pronounced smearing of layers and it often
provides very accurate results.

However, we observed that, in some cases, the Mizukami–Hughes
method does not lead to correct solutions. Moreover, sometimes it is
very difficult to solve the nonlinear problem with a prescribed accuracy.
Therefore, in [D1], we proposed several improvements of the method
which correct the mentioned shortcomings and keep its quality in cases
in which it works well. This was achieved by a more careful definition
of the constants in the test functions ϕ̃i. In particular, a continuous
dependence of these constants on the orientation of b and ∇uh was in-
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Figure 3: Approximate solution of Example 1 obtained using the im-
proved Mizukami–Hughes method for ε = 10−7 (Fig. 12 from [D1]).

troduced. Moreover, the method was extended to convection–diffusion–
reaction equations and to the three-dimensional case. It was shown that
the improved method still satisfies the discrete maximum principle and
its high accuracy was demonstrated by many numerical results. The su-
periority of the improved Mizukami–Hughes method to linear upwinding
finite element methods satisfying the discrete maximum principle was
clearly demonstrated in [32]. The approximate solution of Example 1
obtained using the improved Mizukami–Hughes method on a mesh of
the type from Fig. 2 is depicted in Fig. 3. One can observe a perfect
approximation of the boundary layers and an acceptable smearing of the
interior layer, without any spurious oscillations.

Both the Mizukami–Hughes method in [49] and its improved vari-
ant in [D1] were designed for the strongly convection-dominated case
ε � |b|. In [D2], the method was extended to the whole range of the
diffusion parameter and it was proved that the extended method satisfies
the discrete maximum principle. The favourable properties of the new
method were illustrated by means of numerical experiments.

A drawback of both the original and the improved versions of the
Mizukami–Hughes method is that no existence, uniqueness and conver-
gence results are available. Moreover, it seems to be rather difficult to
generalize the method to more complicated problems or to other types
of finite elements. So far, only a variant for bilinear finite elements is
available, see [33].
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4 SOLD methods

The SUPG method formulated in Section 2 (like many other approaches
adding a linear stabilization term to the Galerkin discretization, see, e.g.,
[13, 19, 24, 48]) significantly reduces the spurious oscillations present in
Galerkin solutions but does not preclude small over- and undershoots
in the vicinity of layers. Although the remaining nonphysical oscilla-
tions are often small in magnitude, they are not permissible in many
applications. An example are chemically reacting flows where it is essen-
tial to guarantee that the concentrations of all species are nonnegative.
Another example are free-convection computations where temperature
oscillations create spurious sources and sinks of momentum that effect
the computation of the flow field. The small spurious oscillations may
also deteriorate the solution of nonlinear problems, e.g., in two-equations
turbulence models or in numerical simulations of compressible flow prob-
lems, where the solution may develop discontinuities (shocks) whose poor
resolution may effect the global stability of the numerical calculations.

The above-mentioned spurious oscillations in SUPG solutions indi-
cate that using the streamlines as upwind direction is not always suf-
ficient. Therefore, as a remedy, various nonlinear terms introducing
artificial crosswind diffusion in the neighborhood of layers have been
proposed to be added to the SUPG formulation in order to obtain a
method which is monotone, at least in some model cases, or which at
least reduces the local oscillations. This procedure is often referred to
as discontinuity capturing or shock capturing, nevertheless, we prefer to
call these methods spurious oscillations at layers diminishing (SOLD)
methods, which we regard as more apposite.

It may be surprising that nonlinear methods are applied to the nu-
merical solution of the linear equation (1). However, for the limit ε = 0,
the famous Godunov theorem [22] states that a linear monotone dis-
cretization is at most of first order convergence so that applying linear
methods limits the accuracy if one insists on the monotonicity. We are
not aware of an analogous mathematical theorem for ε > 0, but nu-
merical experience suggests that the situation is similar for the case of
small ε.
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A typical SOLD term added to the left-hand side of (5) is of the form

(8) (ε̃(uh)∇uh,∇vh)

or

(9) (ε̃(uh)D∇uh,∇vh) ,

where ε̃(uh) is a nonnegative solution-dependent artificial diffusion pa-
rameter and D is the projection onto the line or plane orthogonal to b.
Thus, the term in (8) introduces an isotropic artificial diffusion whereas
the term in (9) adds a crosswind artificial diffusion. An example of ε̃(uh)
is a modification of the artificial diffusion parameter by Codina [18] pro-
posed in [D3], which is given by

(10) ε̃(uh)|T = max

{
0, η

diam(T ) |Rh(uh)|
2 |∇uh|

− ε
}

on any element T of the triangulation. Here, diam(T ) is the diameter
of T , η > 0 is a user-chosen parameter (e.g., η = 0.7 for linear finite
elements) and

(11) Rh(uh) = −ε∆uh + b · ∇uh + c uh − f

is the residual. The result of an application of the SOLD method (9), (10)
to Example 1 is shown in Fig. 4. The underlying SUPG method was used
with the stabilization parameter defined in (6). One observes that the
oscillations of the SUPG solution (cf. Fig. 1) are removed but the layers
are slightly smeared. Nevertheless, on different types of meshes than
that in Fig. 2, the SOLD method (9), (10) may provide solutions with
spurious oscillations, cf., e.g., [D4, Fig. 8b].

The literature on SOLD methods is rather extended but the vari-
ous numerical tests published in the literature do not allow to draw a
clear conclusion concerning their advantages and drawbacks. Therefore,
in [D3], we presented a review of the most published SOLD methods,
discussed the motivations of their derivation, proposed some alternative
choices of parameters and classified them. The review was followed by a
numerical comparison of the considered SOLD methods at two test prob-
lems whose solutions possess characteristic features of solutions of (1).
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Figure 4: Approximate solution of Example 1 obtained using the SOLD
method (9), (10) (Fig. 6.1b from [D7]).

The numerical results gave a first systematic insight into the behaviour
of the SOLD methods and showed that the improved Mizukami–Hughes
method was always the best method if the nonlinear iterations converged.
Among the other SOLD methods, no one could be preferred in all cases
but several methods were identified that should not be applied.

The studies in [D3] were followed by a second part published in [D4]
where the most promising SOLD methods from the first part were inves-
tigated in more detail for linear and bilinear finite elements. Analytical
and numerical studies showed that SOLD methods without user-chosen
parameters are in general not able to remove the spurious oscillations
of the solution obtained with the SUPG discretization. For methods
with a free parameter, like the one in (9), (10), values of the parameter
could be derived in two examples such that the spurious oscillations were
almost removed. It turned out that a spatially constant choice of the
parameters was not sufficient in general and that the optimal parame-
ters depended on the data of the problem and on the mesh. In addition,
an example was presented for which none of the investigated methods
provided a qualitatively correct approximate solution. The iterative so-
lution of the nonlinear discrete problems was also studied. It was shown
that the number of iterations or the convergence of the iterative process
depend again on the problem, the mesh and the parameters of the SOLD
methods. It could be observed that the convergence is often strongly in-
fluenced by the choice of an appropriate damping factor and a strategy
was proposed for an automatic and dynamic computation of this factor.
The studies in this paper revealed that it is in general completely open
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how to obtain oscillation-free solutions using the considered classes of
methods.

The papers [D3,D4] were supplemented by numerical studies for a
convection–diffusion problem with a nonconstant convection field whose
solution possesses interior layers in [D5]. This setting is closer to prob-
lems one encounters in applications than the test problems considered in
the two previous publications. The conclusions were similar as in [D4].
Further comparisons of various SOLD methods can be found in [27, 28].

5 Choice of the SUPG stabilization param-
eter

The studies summarized in Section 4 showed that it is in general not
clear how to design SOLD methods which would suppress the spurious
oscillations present in SUPG solutions to a sufficient extent (without
smearing the layers considerably). One possibility how to circumvent
this problem is to try to improve the definition of the SUPG stabilization
parameter. The formula (6) leads to nodally exact solutions in the one-
dimensional case under simplifying assumptions, see, e.g., [17], but in
two and three dimensions it is not optimal in general. The choice of
the stabilization parameter at characteristic layers has only a limited
influence on the spurious oscillations appearing in these regions (cf., e.g.,
[46]), but there is a hope of improvement at outflow boundary layers.

One possibility how to define the SUPG stabilization parameter at
outflow boundary layers was proposed in [D6] for linear triangular finite
elements. To present this definition, let us first denote by Gh ⊂ Ω the
union of all triangles intersecting the outflow boundary of Ω (i.e., the
part of ∂Ω where the product of b and the outward normal vector to ∂Ω
is positive). Then, by analogy to (6), the parameter τ is defined, on any
triangle T ⊂ Gh, by

(12) τ |T = τ0|T
(

cothPeT −
1

PeT

)
with PeT =

|bT |hT
2 ε

,

where τ0 is a piecewise constant function satisfying

(13)

∫
Gh

ϕi + τ0 b · ∇ϕi dx = 0, i = 1, . . . ,M ,
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Figure 5: Approximate solution of Example 1 obtained using the SUPG
method with τ from (12) (left) and using this approach combined
with the SOLD term (9), (10) away from the boundary layers (right)
(Figs. 6.1c,d from [D7]).

bT is the mean value of b on T , and ϕi are the same basis functions of Vh
as in Section 3. On triangles T 6⊂ Gh, the parameter τ is defined by (6)
with b replaced by bT . It was shown in [D6] that a piecewise constant
function τ0 satisfying (13) exists and an algorithm how to construct it
was given. Numerical results in [D6] demonstrate a significant reduction
of spurious oscillations in approximate solutions in comparison to the
standard choice of τ given by (6) while accuracy away from layers is
preserved. For simple model problems, even nodally exact solutions are
obtained. Whereas all definitions of stabilization parameters published
in the literature so far were based on local information on a given element
of the triangulation, the results of [D6] show that this local information
is not sufficient for obtaining oscillation-free SUPG solutions in general.

The choice of the SUPG stabilization parameter τ introduced in [D6]
was further discussed in [D7]. It was demonstrated that a combination
of this choice of τ and the SOLD method (9), (10) provides fairly satis-
factory approximations of solutions to (1). The results of [D7] also show
that it is essential to define both the parameter τ and the mesh in such
a way that the spurious oscillations in the SUPG solution are as small as
possible. Otherwise the addition of a SOLD term cannot be expected to
lead to an oscillation-free solution. Numerical tests in [D7] illustrate how
small modifications of the mesh may significantly improve the quality of
SUPG solutions.
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Fig. 5 (left) shows that, along the boundary layers, the new definition
of the SUPG stabilization parameter formulated in (12), (13) completely
removes the oscillations present in the SUPG solution for τ given by (6)
and does not introduce any smearing of these layers. Of course, the
oscillations along the interior layer still persist. They can be removed
by adding the SOLD term (9), (10) away from the boundary layers, see
Fig. 5 (right).

6 Adaptive optimization of stabilization
parameters

The above discussion revealed that a basic problem of most of the sta-
bilized methods is the design of appropriate stabilization parameters
which would lead to sufficiently small nonphysical oscillations without
compromising accuracy. As it follows from the publications discussed
in Section 4, ‘optimal’ parameters depend on the data of the problem
and the used mesh in a complicated way so that, in general, one can-
not expect to be able to define them a priori. Therefore, in [D8], we
proposed to compute the stabilization parameters a posteriori by mini-
mizing a target functional characterizing the quality of the approximate
solution. This is a nonlinear constraint optimization problem that has
to be solved iteratively. A key component of this approach consists in
the efficient computation of the Fréchet derivative of the functional with
respect to the stabilization parameter. This was achieved by utilizing
an adjoint problem with an appropriate right-hand side, which led to a
new general framework for the optimization of parameters in stabilized
methods for convection–diffusion equations. Benefits of this approach
were demonstrated on its application to the optimization of a piecewise
constant parameter τ in the SUPG method.

The above-mentioned target functional can be defined, e.g., by

(14) Ih(uh) = ‖Rh(uh)‖20,Ω\Bh
+ ‖φ(|D∇uh)|)‖L1(Ω\Bh) ,

where Rh(uh) is the residual defined in (11), D is the projection onto the
line or plane orthogonal to b used in (9), Bh is the union of all elements
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of the triangulation Th intersecting the boundary of Ω, and

φ(x) =

{ √
x if x ≥ 1,

0.5 (5x2 − 3x3) if x < 1.

The set Bh is excluded from the computation of the integral terms in
(14) since the contributions from this set would dominate the value of Ih
and prevent the method from reducing spurious oscillations outside Bh

sufficiently. Note that the error in Bh is large even for a nodally exact
solution since the layers are not resolved by the mesh in the applications
we have in mind. Thus, a significant reduction of the error in Bh is not
possible. The second term in (14) controls the crosswind derivative of uh
and its minimization should lead to suppressing spurious oscillations in
the crosswind direction which can be observed, e.g., in Fig. 5 (left). It is
defined as the integral of

√
|D∇uh| with a regularization of the square

root near the origin. A motivation for this definition can be found in
[D9]. The target functional defined in (14) gave the best results in [D8].

In [D9], the methodology proposed in [D8] was applied to the opti-
mization of the parameters in a SOLD method. Since one of the most
promising approaches among the SOLD methods seems to be the mod-
ified method of Codina (9), (10), we considered the SUPG method en-
riched by the crosswind artificial diffusion term (9) with

ε̃(uh)|T = η
diam(T ) |Rh(uh)|

2 |∇uh|
∀ T ∈ Th .

Both the parameters τ and η were optimized as piecewise constant func-
tions. In this way very accurate numerical results with steep layers and
negligible spurious oscillations could be obtained. The only drawback
of this approach is the increased computational cost connected with the
solution of the optimization problem.

Two results of the parameter optimization for Example 1 are shown
in Fig. 6. One observes that the optimization of the SUPG parameter
leads to a perfect approximation of the boundary layers but the spurious
oscillations along the interior layer are not removed completely. This can
be accomplished by adding the SOLD term (9), (10) and optimizing the
parameter η simultaneously with the parameter τ , see Fig. 6 (right).
One can observe that no additional smearing of the layers appears.

18



 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2

 0.4

 0.6

 0.8

 1

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2

 0.4

 0.6

 0.8

 1

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Figure 6: Results of the parameter optimization for Example 1: SUPG
method (left) and the SOLD method (9), (10) (right) (Fig. 1 from [D9]).

7 Local projection stabilization

The enhanced stability of the SUPG method (5) in comparison with the
Galerkin method (4) originates from the term (b · ∇uh, τ b · ∇vh). For
several reasons, which will be mentioned below, it would be convenient
to consider only this term instead of the whole weighted residual stabi-
lization term in (5). Then, however, the resulting method would not be
consistent and the accuracy of the method would considerably deterio-
rate. A possible remedy is to consider only a small-scale part of b · ∇uh
defined using local projections into large-scale spaces. If the local projec-
tion spaces are chosen appropriately, the stability of the SUPG method
is preserved without compromising the accuracy.

The local projection stabilization (LPS) was originally proposed in [6]
as a technique for stabilizing discretizations of the Stokes problem in
which both the pressure and the velocity components are approximated
using the same finite element space. Later, the local projection method
was extended to stabilization of convection dominated problems [7] and
applied to various types of incompressible flow problems (see the re-
view article [11]) and to convection–diffusion–reaction problems, see,
e.g., [20, 35, 48]. To define a local projection stabilization of the Galerkin
discretization (4), one introduces a second division Mh of Ω which typ-
ically consists of macroelements, i.e., unions of elements of Th. For
each M ∈Mh, one introduces a finite dimensional space DM ⊂ L2(M)
and defines an orthogonal L2 projection πM of L2(M) onto DM . It is
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assumed that there is a positive constant β independent of h such that

(15) sup
v∈VM

(v, q)M
‖v‖0,M

≥ β ‖q‖0,M ∀ q ∈ DM , M ∈Mh ,

where VM = {v ∈ Vh; v = 0 in Ω \ M}. This inf–sup condition is
crucial for proving both optimal error estimates and improved stability
results, cf. [47, 35] and [D10,D12]. Finally, it is convenient to introduce
a constant approximation bM of b on each set M . Then, denoting by
κM := id−πM the so-called fluctuation operator (where id is the identity
operator on L2(M)), the local projection discretization of (1), (3) defines
an approximate solution uh ∈ Vh satisfying

a(uh, vh) + sh(uh, vh) = (f, vh) ∀ vh ∈ Vh

with

(16) sh(uh, vh) =
∑

M∈Mh

τM (κM (bM · ∇uh), κM (bM · ∇vh))M ,

where τM is a nonnegative stabilization parameter. It is also possible to
use the full gradient instead of bM · ∇ in the stabilization term, i.e.,

(17) sh(uh, vh) =
∑

M∈Mh

τM (κM∇uh, κM∇vh)M ,

where κM is applied to the vector-valued functions componentwise. The
parameter τM in (16) can be defined analogously as in the SUPG method
(cf. (6)); the parameter in (17) should be additionally multiplied by
‖b‖2L∞(M). Let us mention that a standard choice is to use b instead

of bM in (16). However, we demonstrated in [35] that then it is gener-
ally not possible to obtain optimal convergence results if τM scales with
respect to the data like in (6).

The advantage of the LPS method compared to the SUPG method is
that it does not require the costly computation of second order deriva-
tives and can be easily applied to non-steady problems. Moreover, when
applied to systems of partial differential equations, it is possible to avoid
undesirable couplings between various components of the solution. A fur-
ther advantage of these techniques is that they are symmetric. Therefore,
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if they are applied to optimization problems, the operations ‘discretiza-
tion’ and ‘optimization’ commute [8, 10].

The action of the operator πM onto a function can be interpreted
as extracting its large-scale part. Then the fluctuation operator κM
provides the small-scale part (fluctuations around the large-scale part).
The LPS method can be also interpreted as a variational multiscale
method where the influence of the unresolved scales is modeled by the
stabilization term determined by the small scales.

A natural norm for the LPS method is given by

(18) ‖v‖LPS =
(
ε |v|21,Ω + ‖σ1/2 v‖20,Ω + sh(v, v)

)1/2

,

which is clearly weaker than the SUPG norm defined in (7). For a long
time, it was not clear whether the LPS method is less stable than the
SUPG method. The first contribution to clarifying this question was
made in [D10], where it was shown that the LPS method is stable in the
sense of an inf–sup condition with respect to the norm

(19) |||v||| =

(
‖v‖2LPS +

∑
M∈Mh

δM ‖ΠM (b · ∇v)‖20,M

)1/2

,

where ΠM is the orthogonal L2 projection of L2(M) onto VM and δM is
defined analogously as the SUPG parameter in (6). It was proved that,
under certain simplifying assumptions, this norm can be bounded from
below by a norm analogous to the SUPG norm, which implies, roughly
speaking, that the LPS method is as stable as the SUPG method. For
the stabilization term (16), the norm ||| · ||| could be bounded by an
analogue of the SUPG norm also from above. The stability of the LPS
method with respect to the norm (19) holds true also for τM = 0, i.e.,
the results of [D10] show that the Galerkin finite element method (4) is
more stable than usually believed. It was demonstrated in [D10] that this
result implies that certain types of oscillating solutions are not allowed
by the Galerkin method; basically, only a small-scale part of the Galerkin
solution has to be stabilized – and this is exactly what the LPS method
does.

Originally, the LPS method was designed as a two-level approach
where the mesh Th was obtained by a refinement of a triangulation
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Mh of Ω. A crucial property of these refinements is that they always
create an additional vertex in the interior of any refined element of Mh.
Later, in [47], the one-level approach was introduced where Mh = Th

and the validity of the inf–sup condition (15) was assured by defining Vh
as a finite element space enriched using higher-order polynomial bubble
functions. In [D11], a critical comparison of the two approaches, both
computational and analytical, was given, which showed that there are
no convincing arguments for preferring one of these approaches.

A drawback of both variants of the LPS method is that they require
more degrees of freedom than the SUPG method since the finite ele-
ment space is either defined on a refined mesh or enriched by additional
functions. Therefore, in [36] and [D12], we introduced a generalization
of the LPS method which avoids these drawbacks by allowing to use
overlapping macroelements. The error analysis for this generalized LPS
method with respect to the norm (18) was presented in [36] for both
stabilization terms (16) and (17). In [D12], the results of [D10] were im-
proved in the sense that the stability of the LPS method defined using
(16) with respect to the SUPG norm was shown without any simplifying
assumptions. Another stability result with respect to the SUPG norm
was established in [34] by defining the local projection operators using a
weighted L2 inner product.

Like the SUPG method, the LPS does not remove the spurious oscil-
lations present in Galerkin solutions completely and some of them still
remain in the vicinity of layers. Therefore, in [D13], we combined the
LPS method defined using (16) with the SOLD term∑

M∈Mh

(ε̃M (uh)κM (DM∇uh), κM (DM∇vh))M ,

where

(20) ε̃M (uh) = η hM |bM | |κM (DM∇uh)|

or

(21) ε̃M (uh) = η hM |bM |
h
d/2
M |κM (DM∇uh)|

|uh|1,M
,

hM is the diameter of M , η > 0 is a constant user-chosen parameter, and
DM : Rd → Rd is the projection onto the line or plane orthogonal to the
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vector bM (cf. (9), (10)). In this paper, also the transient convection–
diffusion–reaction equation

ut − ε∆u+ b · ∇u+ c u = f in (0, T ]× Ω

equipped with initial and boundary conditions was considered. The data
b, c, and f were assumed to vary on the time interval [0, T ]. A one-step
θ-scheme was applied as temporal discretization whereas the discretiza-
tion with respect to the space variables was performed as in the steady-
state case. For both the steady-state and transient cases, the solvability,
uniqueness (for the variant (20) or a sufficiently small time step) and er-
ror estimates were proved. In the transient case, both the fully nonlinear
scheme and a linearized variant were considered. Promising numerical
results were also obtained for ε̃M (uh) defined by replacing the fraction
in (21) by its square. The corresponding analysis for the steady-state
and transient cases was performed in [5] and [37], respectively.

8 Algebraic flux correction

As we have discussed in the previous sections, most of the methods
developed for the numerical solution of convection-dominated problems
either do not suppress spurious oscillations in layer regions sufficiently, or
introduce too much artificial diffusion and lead to a pronounced smearing
of layers. However, there is one class of methods that seems not to
suffer from these two deficiencies: the algebraic flux correction (AFC)
schemes. These schemes are designed to satisfy the discrete maximum
principle by construction (so that spurious oscillations cannot appear)
and provide sharp approximations of layers, cf. the numerical results in,
e.g., [3, 23, 30, 40]. Like many of the schemes discussed above, the AFC
schemes are nonlinear. A drawback of these schemes is that they have
been applied successfully only for lowest order finite elements, which
limits the accuracy of the computed solutions.

The basic philosophy of flux correction schemes was formulated al-
ready in the 1970s in [9, 53]. Later, the idea was applied in the finite
element context, e.g., in [2, 45]. In the last fifteen years, these meth-
ods have been further intensively developed by Dmitri Kuzmin and his
coworkers, see, e.g., [38, 39, 40, 41, 43]. Despite the attractiveness of
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AFC schemes, there was no rigorous numerical analysis for this class of
methods for a long time. To the best of our knowledge, our results in
[D14,D15,D16] represent the first contributions in this direction.

In contrast to the methods discussed in the preceding sections, which
are all based on variational formulations, the idea of the AFC schemes is
to modify the algebraic system corresponding to a discrete problem. As
this underlying discrete problem, we use the Galerkin discretization (4)
with a finite element space Vh consisting of continuous piecewise linear
functions with respect to a simplicial triangulation of Ω and assume
that div b = 0 and c ≥ 0. We shall formulate the AFC scheme in a
form which can be used also with nonhomogeneous Dirichlet boundary
conditions for u. To this end, we denote by x1, . . . , xM the interior
vertices of Th and by xM+1, . . . , xN the vertices of Th lying on ∂Ω. Then,
a continuous piecewise linear approximate solution uh can be represented
by the vector U ≡ (u1, . . . , uN ) of its values at the vertices x1, . . . , xN ,
and the Galerkin discretization (4) can be equivalently written as a linear
system

(22)

N∑
j=1

aij uj = fi , i = 1, . . . ,M ,

where the values uM+1, . . . , uN are determined by the Dirichlet boundary
condition on ∂Ω; in our case, they all vanish. Now, the matrix of (22)
is extended to a matrix (aij)

N
i,j=1 (typically, one uses the finite element

matrix corresponding to the equation (1) with homogeneous Neumann
boundary conditions) and one defines a symmetric artificial diffusion
matrix (dij)

N
i,j=1 with the entries

dij = dji = −max{aij , 0, aji} ∀ i 6= j , dii = −
∑
j 6=i

dij .

Using this artificial diffusion matrix, the linear system (22) is rewritten
in a form with a M-matrix on the left-hand side and a sum of antid-
iffusive fluxes on the right-hand side. Those of these fluxes that are
responsible for a violation of the discrete maximum principle are lim-
ited using solution-dependent correction factors. In this way, the linear
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system (22) is replaced by the nonlinear problem

(23)

N∑
j=1

aij uj +

N∑
j=1

(1− αij(U)) dij (uj − ui) = fi , i = 1, . . . ,M ,

with αij(U) ∈ [0, 1], i, j = 1, . . . , N . The limiter functions αij are to
be chosen in such a way that the AFC scheme (23) satisfies the discrete
maximum principle.

In [D14], the AFC scheme (23) was investigated in the one-dimen-
sional case for a limiter defined in [39]. In contrast to the common
application of AFC schemes, it was not assumed that αij = αji, which
may cause a lack of conservation. It was proved that the scheme satisfies
a discrete maximum principle if a solution exists. However, examples
were constructed which show that this scheme does not necessarily have
a solution. A modification of the scheme was proposed for which the
existence of a solution and a weak variant of the discrete maximum
principle were proved.

In [D15], the AFC scheme (23) with limiters satisfying the symme-
try condition αij = αji was analyzed for general linear boundary value
problems in any space dimension. Under a continuity assumption on
the limiters, the existence of a solution was proved. As a consequence,
the unique solvability of the linearized problem (23) (i.e., with αij in-
dependent of U) was obtained, which is useful for computing the so-
lution of (23) numerically using a fixed-point iteration. Furthermore,
the AFC scheme was formulated in a variational form and an abstract
error estimate was derived. As usual for stabilized methods, the norm
for which the error estimate is given contains a contribution from the
flux correction term in (23). Then the abstract theory was applied to a
discretization of the convection–diffusion–reaction equation (1) and an
error estimate was derived. Numerical results in [D15] show that, under
the minimal assumptions on the limiters used in the analysis, the derived
error estimate is sharp. Finally, for the limiter of [39], the AFC scheme
(23) was proved to satisfy the discrete maximum principle on Delaunay
meshes.

The limiter of [39] investigated in [D14,D15] can be regarded as a
standard limiter for steady-state problems. However, apart from the
fact that is does not guarantee the discrete maximum principle on gen-
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Figure 7: Distorted mesh used in the simulations of [D16] (left) and
starting point for its construction (right) (Fig. 4 from [D16]).

eral meshes, its further drawback is that it is not linearity preserving
in general. This property demands that the AFC term vanishes if the
solution is a polynomial of degree 1 (at least locally). This restriction,
which can be interpreted as a weak consistency requirement, is believed
to lead to improved accuracy in regions where the solution is smooth. In
fact, in previous works, linearity preservation was linked to good conver-
gence properties for diffusion problems (see, e.g., [26, 42]). In addition,
it has been observed in different works (see, e.g., [16] and, especially, the
introduction in [21] for a discussion) that linearity preservation improves
the quality of the approximate solution on distorted meshes.

The above considerations were a motivation for our recent publication
[D16]. Here we specified rather weak assumptions on the limiters that
are sufficient for proving the discrete maximum principle. Then a limiter
was designed that fulfills these assumptions by modifying the algorithm
proposed in [40]. The linearity preservation was assured by introducing
an explicit geometric information about the mesh into the definition of
the limiter. Numerical studies in [D16] support the analytical results and
indicate that the linearity preservation is important for an optimal con-
vergence of the AFC scheme. To the best of our knowledge, the method
presented in [D16] is the first AFC scheme for a convection–diffusion–
reaction equation that satisfies both the discrete maximum principle and
linearity preservation on general simplicial meshes.

Numerical results in [D16] were computed on distorted meshes. They
were constructed starting from Delaunay meshes of the type depicted
in Fig. 7 (right) by shifting interior nodes to the right by half of the
horizontal mesh width on each even horizontal mesh line. This leads to
meshes of the type shown in Fig. 7 (left). For most of the diagonal edges,
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Figure 8: Two views of the approximate solution of Example 1 computed
using the AFC scheme (23) with the limiter introduced in [D16] (Figs. 7
and 8 from [D16]).

the sum of the two angles opposite the edge is greater than 5π/4 and
hence the mesh is not of Delaunay type. Two views of the approximate
solution of Example 1 computed using the AFC scheme (23) with the
limiter introduced in [D16] on a mesh of the type shown in Fig. 7 (left) are
depicted in Fig. 8. One can observe that the method provides very sharp
approximations of all the layers and no spurious oscillations appear.

9 Future work

The doctoral thesis shows that there are still many open questions and a
wide potential for improvement in the field of discretization techniques
for convection–diffusion problems. In particular, the algebraic flux cor-
rection seems to be a promising approach which deserves deeper investi-
gations and we plan to continue our research in this area in the near fu-
ture. For example, it would be interesting to analyze the time-dependent
case or to extend the analysis to anisotropic meshes, to derive a poste-
riori error estimates and to develop adaptive techniques, or to improve
the efficiency of the solution of the nonlinear algebraic systems.
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T. Vejchodský, editors, Proceedings of the International Conference
Programs and Algorithms of Numerical Mathematics 13, pp. 122–
136. Academy of Science of the Czech Republic, Prague, 2006.

[28] V. John and P. Knobloch. On discontinuity-capturing methods
for convection–diffusion equations. In A. Bermúdez de Castro,
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editors, Proceedings of Czech–Japanese Seminar in Applied Mathe-
matics 2006, volume 6 of COE Lecture Note, pp. 137–147. Faculty
of Mathematics, Kyushu University, 2007.

[34] P. Knobloch. On a variant of the local projection method stable in
the SUPG norm. Kybernetika 45 (4): 634–645, 2009.

33



[35] P. Knobloch. On the application of local projection methods to
convection–diffusion–reaction problems. In A.F. Hegarty, N. Kop-
teva, E.O. Riordan, and M. Stynes, editors, BAIL 2008 – Boundary
and Interior Layers, volume 69 of Lect. Notes Comput. Sci. Eng.,
pp. 183–194. Springer-Verlag, Berlin, 2009.

[36] P. Knobloch. Local projection method for convection–diffusion–
reaction problems with projection spaces defined on overlapping
sets. In G. Kreiss, P. Lötstedt, A. Målqvist, and M. Neytcheva, edi-
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