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Abstract

Ćılem této doktorské práce je podat přehled mého př́ıspěvku k problema-
tice studia Hořavovy-Lif̌sicovy teorie gravitace. V jej́ı prvńı části stručně
poṕı̌si problémy tykaj́ıćı se kvantováńı gravitačńı teorie. V daľśı části shrnu
základńı principy Hořavovy-Lif̌sicovy gravitace. Poté podám přehled r̊uzných
verźı této teorie a budu diskutovat jejich konsistenci. Dále poṕı̌si hamilto-
novskou formulaci těchto teoríı, která má fundamentálńı význam pro určeńı
fyzikálńıch stupň̊u volnosti. V závěru stručně shrnu základńı fakta týkaj́ıćı
se Hořavovy-Lif̌sicovy teorie a nast́ıńım směry, kterými by se měl následuj́ıćı
výzkum této teorie ub́ırat. Závěrečná část této práce obsahuje přehled mých
praćı týkaj́ıćı se této problematiky.
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1 Introduction

1.1 Gravity and Renormalizability

One of the most striking problem of the current theoretical physics is an
inconsistency between quantum mechanics and general relativity. In more
details, when we consider the perturbative general relativity as an ordinary
quantum field theory we find that this theory is not renormalizable which
is in strict difference with the success of the Standard Model description of
the particle physics. This fact means that even if the general relativity is
very succesful for the description of the classical gravitational phenomena
it should be viewed as an effective theory that breaks down at some scale.
Beyond that scale general relativity is not able to describe the gravitational
interaction on space time and it is not possible to consruct its quantum
version using conventional quantization techniques.

If we accept the point of view that the general relativity is an effective
theory then we can say that the Einstein-Hilbert action contains only the
lowest order terms in curvature expansion. The natural question is whether
inclusion of the higher order curvature terms could make the general theory
renormalizable theory. This could work when we recognize that such terms
could modify the propagator of the graviton at high energies [1]. However
the price what we pay for such a renormalizable theory of gravity is hight:
This theory contains ghost degrees of freedom and are therefore not unitary.
This is a general property of all higher time derivatives theories.

On the other hand there is an interesting possibility to modify the pro-
pagator by adding higher order spatial derivatives without adding the higher
order time derivatives. Intuitively we should expect to find theory with im-
proved high energy behavior in ultraviolet regime (UV) without having pro-
blems with the higher order time derivatives. Clearly such a presumption
implies that the time and spatial coordinates should be treated on different
footing and consequently the resulting theory is not Lorentz invariant. On
the other hand we can still hope that following picture emerges: We have
theory that is not Lorentz invariant at high energies but where the theory
is renormalizable due to the Lorentz non-invariant propagator but at the
low energy regime (IR) the Lorentz invariance could be recovered or at le-
ast the Lorentz violations in the IR could stay below current experimental
constraints.

In December 2008 and January 2009 Hořava formulated his proposal
[2, 3] which is now known as Hořava-Lifshitz gravity. This proposal was
extensively studied either from theoretical or phenomonological points of
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view. The main idea of given proposal is simple: try to modify gravity at
UV scale so that the theory is renormalizable. In the next we review this
framework and its major development.

1.2 Lorentz violation as a field theory regulator

As we wrote briefly above the main idea how to find the renormalizable
theory is to give up Lorentz invariance at high energies. Note that this idea
goes beyond the gravity and it has been considered in the past for other
fields and further branches of theoretical physics, as for example condensed
matter physics. We can demonstrate this idea on the simple example of the
scalar field, following [4].

It is important to stress that there is nothing wrong when we presume
that Lorentz invariance is broken at hight energies. On the other hand the
Lorentz violations are severely constrained in a wide range of energies and
especially in the IR. In other words the main question is whether we can
construct a field theory that exhibits Lorentz violations which in the far UV
lead to renormalizability but remains consistent Lorentz invariant theory at
low energies. Let us consider following scalar field action

Sϕ =

∫
dtddx

(
ϕ̇2 −

z∑
m=1

amϕ(−△)mϕ+
M∑
n=1

gnϕ
n

)
, (1)

where

ϕ̇ ≡ ∂ϕ

∂t
, (2)

and where

△ =
1
√
γ
∂i[

√
γγij∂j ] (3)

is the spatial Laplacian with γij is the spatial metric that in the flat space
time is diagonal γij = diag(1, . . . , 1). Further, z and M are positive integers
that will be specified below. We call theory as ”power counting renormaliza-
ble”when all of its interaction terms scale like energy to some non-positive
power so that Feynmann diagrams are expected to be convergent. To see this
explicitly we firstly choose the engineering dimensions of space and time as

[dt] = [κ]−z , [dx] = [κ]−1 , (4)

where κ is symbol with dimension of momentum. The main requirement is
that the action is dimensionless so that from the kinetic term we determine
the dimension of the scalar field

[ϕ] = [κ](d−z)/2 . (5)
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Then checking that the potential contribution in the action is also dimensi-
onless implies the scaling dimensions of am and gn

[gn] = [κ]d+z+n
2
(z−d) , [am] = [κ]2(z−m) . (6)

We clearly see that am has non-negative momentum dimension for all m.
Further, gn has non-negative momentum dimension for all n when z ≥ d.
When z < d we see that gn has non-negative momentum dimension only
when n ≤ 2(d+z)

d−z . Let us now consider concrete values of d and z. For exam-
ple, in case d = 3 we find that the theory is renormalizable for z = 1 and for
M = 4 which is well known fact that the usual relativistic ϕ4 theory is power
counting renormalizable in 3+1 dimensions. However there is an interesting
class of the scalar field theories where z = d that is renormalizable for z = 3
in 3 + 1 dimensions.

In case of the graviton the situation is slightly different due to the fact
that the graviton self-interaction vertices are more complicated. Explicitly,
in case of the scalar field we have interaction vertices where the momenta do
not enter these interactions. On the other hand in case of the graviton we
have self-interactions vertices that contain spatial derivatives. Clearly this
fact slightly complicates the situation however does not spoil the power-
counting renormalizability as long as z ≥ d and the action contains operators
with at least 2d spatial derivatives.

In summary, all these arguments provide a strong support that the field
theories that contain at least 2d spatial derivatives in d+ 1 dimensions are
power counting renormalizable.

2 Non-Relativistic Gravity

In this section we give a brief description of the exact structure of a gravity
that has the characteristics mentioned in the previous sections. For simplicity
we will consider an explicit case of 3 dimensions. The basic requirement is
that the theory should have only two time derivatives but at least 6 spatial
derivatives. However the fact that we have more spatial derivative than time
derivatives implies that these two derivatives should be treated differently.
This fact can be naturally incorporated into the theory when we work in
Arnowitt-Deser-Misner (ADM) decomposition of the spacetime

ds2 = −N2c2dt2 + gij(dx
i +N idt)(dxj +N jdt) . (7)

Due to the fact that time is treated differently than space we have to pick a
preferred foliation of spacetime. Clearly such an action cannot be invariant
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under the full diffeomorphism as in case of general relativity. However it
turns out that given action can be invariant under restricted set: foliation
preserving diffeomorphism which is the space-independent time reparame-
terization together with time-dependent spatial diffeomorphism

t′ = f(t) , x′ = xi(t, xj) . (8)

The basic requirement for the construction of the theory is that the action
has to respect given symmetries.

It is easy to see that the only covariant quantity under (8) that contains
the time derivative of the spatial metric is the extrinsic curvature

Kij =
1

2N
(ġij −∇iNj −∇jNi) , (9)

where ġij denotes differentiation with respect to time coordinate and ∇i is
the covariant derivative associated with the spatial metric gij . Note also that
Kij transforms as a scalar under time reparameterization t′ = f(t).

Further, the requirement that the theory should be second order in time
derivatives in order to avoid the presence of the ghosts implies that the
action should contain terms quadratic in the extrinsic curvature. It is also
important to stress that there are no invariants under symmetry (8) that
contain time derivatives of the lapse N or the shift Ni without including
higher order time derivatives of gij as well. Therefore the most general action
that we can consider is

S =
M2

pl

2

∫
d3xdtN

√
g
[
KijGijklK

kl − V(gij , N)
]
, (10)

where Mpl is a constant which can be identified with the Planck mass, g is
the determinant of the spatial metric gij and where Gijkl is the generalized
de Witt metric

Gijkl =
1

2

(
gikgjl + gilgjk

)
− λgijgkl , (11)

where λ is dimensionless coupling constant. V generally depends on gij and
N and their spatial derivatives. It does not contain time derivatives and
also cannot depend on the shift Ni since there are no suitable invariants
that are invariant under (8). Finally the power counting renormalizability
requires that V contains terms that are sixth order in spatial derivatives.
Of course, we can consider the theory that contain spatial derivatives of
arbitrary order but for simplicity we restrict ourselves to the theories that
contain sixth order spatial derivatives but not higher.
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3 Potential and various versions of the theory

We see that there are many possibilities how to construct the potential V.
In fact, different choices lead to the different version of the theory. We would
like to give list of some of them.

3.1 Detailed balance

In the first formulation of the HL gravity P. Hořava proposed that the po-
tential V should be defined using so named detalied balance which is inspired
by condensed matter systems. This principle says that the potential should
be derived from a superpotential W

V = EijGijklE
kl , (12)

where

Eij =
1
√
g

δW

δgij
. (13)

Then the most general action that we can write with V satisfying the con-
ditions above is

Sdb =
M2

pl

2

∫
d3xdtN

√
g

[
KijGijklKkl −

α4

M4
pl

CijC
ij +

2α2β

M3
pl

ϵijk
√
g
Ril∇jR

l
k−

− β2

M2
pl

RijRij +
β2

4

1− 4λ

1− 3λ
R2 +

β2ζ

1− 3λ
R− 3β2ζ2

1− 3λ
M2

pl

]
,

(14)

where ϵijk is the Levi-Civita symbol and where

Cij =
ϵikl
√
g
∇k

(
Rj

l −
1

4
δjlR

)
(15)

is the Cotton tensor and α, β and ζ are dimensionless couplings. It is im-
portant to stress that there are only 3 new couplings for a total of 6 terms
in V.

The advantages of the detailed balance formulation of the HL gravity is
that it reduces the number of terms that we can consider in the potential
which could simplify the action. On the other hand there is nothing fun-
damental about detailed balance so it can be considered as an assumption
that simplify the calculation.
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3.2 Projectable HL gravity

There is another restriction that simplifies given theory which is called as
projectability. This is a presumption that the lapse is just a function of time
N = N(t). It is important to stress that there is no fundamental principle
behind this assumption. One reason for such a choice is that only in this
case we can impose the gauge fixing N = 1 as in general relativity which
is not possible in case without projectability since the foliation preserving
diffeomorphism only allows time independent reparameterizations.

The assumption of the projectability implies that all terms with spatial
derivative of N vanish. In fact, the potential V depends on the metric and its
spatial derivatives which means that the action includes all of the curvature
invariants that can be constructed from gij up to six spatial derivatives. An
important simplification occurs in three dimensions where the Weyl tensor
vanishes identically and the Riemann tensor can be expressed in terms of
Ricci tensor. Using Bianchi identities and ignoring the boundary terms we
find the most general action

Sp =
M2

pl

2

∫
d3xdtN

√
g
(
KijGijklKkl − g0M

−1
pl − g1R− g2M

−2
pl R2−

− g3M
−2
pl RijR

ij − g4M
−4
pl R3 − g5M

−4
pl R(RijR

ij)−

− g6M
−4
pl Ri

jR
j
kR

k
i − g7M

−4
pl R∇2R− g8M

−4
pl ∇iRjk∇iRjk

)
,

(16)

where gi are dimensionless couplings. We should mention following remarks
considering this action:

• When we impose projectability together with detailed balance we find
that the action Sdb is the same apart from the fact that N is the
function of time only.

• There are just more 3 operators in the most general projectable action
than in the one with detailed balance which means that the detai-
led balance does not simplify the action enough. For that reason the
projectable version is more studied than the detailed balance one.

• g0 controls the value of the cosmological constant which is not restric-
ted.

• There are two types of Lorentz violating terms in the action. The ones
that are contained in V. These terms are suppressed by some scale
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that can be determined by tuning the coupling g2 to g8. The second
one is contained in the kinetic term and is related to the fact that λ
is not generally equal to 1.

• All couplings are running. We generally hope that λ runs to 1 in the
IR or sufficiently close to it in order to satisfy experimental constra-
ints. As a result we find that the theory could effectively reduce to
general relativity and diffeomorpism invariance would emerge as IR
(approximate) symmetries. However given analysis requires to apply
the renormalization group machinery to given problem which as far as
we know has not been done yet.

3.3 Non-projectable Hořava-Lifshitz gravity

The most general formulation of the HL gravity corresponds to the case
when neither detailed balance nor projectability are enforced. This version
is known as non-projectable HL gravity. It is important to stress that when
we abandon detailed balance then adding just some specific forms of the
extra terms is not right way how to construct the most general form of
the non-projectable HL gravity. In fact, radiative corrections will generate
all possible terms compatible with the symmetries of the theory and hence
all such terms should be taken into account. The crucial point of the non-
projectable HL gravity is that the potential term should contain also terms
constructed using the vector quantity

ai =
1

N
∂iN , (17)

as contractions of it with itself or curvature terms that lead to invariants
[14]. The lowest order invariant that can be constructed from ai is aia

i so
that the action will be of the form

Snp =
M2

pl

2

∫
d3xdtN

√
g

[
KijGijklKkl + ζR+ ηaia

i +
1

M2
A

L4 +
1

M4
B

L6

]
,

(18)
where L4 and L6 include all possible 4th and 6th order operators respectively
that one can construct using ai and gij . This is the version of the theory
that was firstly analyzed in [14] in order to resolve some inconsistencies in
the non-projectable version of the theory which we will mention below. We
would like to make following comments considering non-projectable version
of HL gravity:
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• The action above can be extended by inclusion of the cosmological
constant.

• The scales MA and MB that suppress the higher order operators are
arbitrary. This is an analog of the situation in the projectable case
where we have arbitrary dimensionless couplings gi.

• The number of operators in the non-projectable case is larger than in
the projectable case.

• If we believe that the general relativity should be recovered in the IR
we should demand that λ goes to 1 and η has to run to 0.

3.4 Horava-Lifshitz gravity with other symmetries

The actions that were presented above are invariant under foliation pre-
serving diffeomorphism (8) and not under the full set of diffeomorphism.
However the fact that the theory possesses less symmetries than general
relativity implies that there is a possibility of the existence of a additional
scalar mode that could be dangerous for the consistency of given theory.

Way how to eliminate this unwanted mode is l non-trivially extend the
gauge symmetry of the theory so that it will have as many generators per
space-time point as general relativity. This was firstly performed in [7] when
the action was suitable modified in order to have an extra U(1) symmetry.
Explicitly, the action presented there has the form

SextraU(1) =
M2

pl

2

∫
d3xdtN

√
g
[
KijGijklKkl − V(g,N)+

+ νΘij(2Kij −∇i∇jν)−A(R− 2Ω)/N
]

(19)

where Ω is a constant, A acts as a Lagrange multiplier, ν is an auxiliary
scalar field and

Θij ≡ Rij − 1

2
gijR+Ωgij , (20)

and where V contains 6th order operators. It was argued in [7] that at IR
this theory reduces to general relativity and the extra gauge symmetry leads
to the spin 2 graviton excitation. It was then shown in [8] that this form of
the HL gravity is in fact equivalent to the Lagrange multiplier extension of
the HL gravity which means that we add the additional term to the action.
This term is constructed from the Lagrange multiplier that multiplies some
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function of canonical variables. Clearly such a term imposes an additional
constraint in the theory which eliminates one degree of freedom. On the
other hand such construction seems to be rather artifical and deserves further
investigation.

4 Consistency of the projectable Version

In this section we perform more detailed analysis of the consistency of the
projectable version of HL gravity. The significant property of the projectable
version is that the lapse function N(t) depends on time and hence the va-
riation of the action with respect to N does not lead to the usual local
Hamiltonian constraint but to a global constraint. In other words this is the
constraint in the form of an integral over space. This is crucial difference
with respect to the non-projectable case.

An important point in each physical theory is the number of physical
degrees of freedom and their nature. The general answer on this question
can be found in the Hamiltonian formulation of given theory when we iden-
tify all constraints, determine whether they are the first class or the second
class constraints and then we perform the counting of the physical degrees
of freedom [20]. However this procedure could be very troublesome due to
the fact that we firstly have to find Hamiltonian of given theory, then deter-
mine all constraints and calculate the Poisson brackets between them. An
alternative way how to determine physical content of given theory at least
in some situation is to analyze the linearized equations of motion around
some background. The simplest case is the flat background and then after
suitable gauge fixing it is possible to find following equation of motion for
propagating a spin-2 mode

¨̃Hij = −[g1∂
2 + g3M

−2
pl ∂4 + g0M

−4
pl ∂6]H̃ij , (21)

where H̃ij is transverse and traceless

∂iH̃ij = 0 , δijH̃ji = 0 . (22)

The crucial point is that the less symmetry we have the more degrees of
freedom will be unconstrained so that we expect to find more excitations
than in case of GR. It turns out that this is really the case and there is an
extra scalar degree of freedom whose linerized dynamics is governed by the
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action

Sp
2 = −M2

pl

∫
d3xdt

[
1

c2h
ḣ2 + h∂2h+

8g2 + 3g3
M2

pl

(∂2h)2 − 8g7 − 3g8
M2

pl

(∂2h)3

]
,

(23)
where

c2h =
1− λ

3λ− 1
, ∂2 = ∂i∂i . (24)

From the action (23) we see that the scalar mode is ghost (mode with nega-
tive kinetic term) on condition when 1 > λ > 1/3. In fact, it turns out that
in order the resulting instability not to be visible we have to demand that
|1 − λ| < 10−61. This value is clearly very low and it is difficult to believe
that renormalization group flow could drive λ to this value.

It was shown in [10, 11] that when we perform the linearized analysis
around de Sitter background we find that the scalar mode exhibit better
behavior. On the other hand the qualitatively the result is the same: λ
needs to be sufficiently close to 1 for the instability not to have visible
consequences.

It is important to stress that the previous analysis was based on the li-
nearized dynamics when the perturbative action is quadratic in h. However
it was shown in many papers that such perturbative treatment breaks down
when λ approaches 1 when the scalar mode is strongly coupled. In fact, it
turns out that the strong coupling scale is phenomenologically unacceptably
low since it is well known that we can tread gravity perturbatively at low
energies. On the other hand we can ask the question whether when we
include non-linear effect we could resolve the strong coupling problem by an
analogue of the Vainstein mechanism in massive gravity 1. In fact, it was
shown in [13] that this is really possible in case of spherically symmetric, sta-
tic configurations. Unfortunately definitive conclusion has not been reached
yet and this proposal deserves further study.

5 Non-projectable version: Its dynamics and con-
sistency

We consider non-projectable version of the theory with no-detailed balance
imposed. The dynamics of the spin 2 graviton is the same as in the pro-
jectable version so that we will not discuss it here. Further, as in the pro-
jectable case there is an extra scalar degree of freedom whose dynamics is

1For recent review, see [12].
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governed by the action

Snp
2 = −M2

pl

∫
d3xdt

[
1

c2h
ḣ2 +

η − 2

η
h∂2h

]
. (25)

This is the action that is derived by linearizating the action (18) around the
flat space and considering only the lowest order operators. Note that c2h is
defined in (24). On the other hand the low momentum phase velocity of the
scalar is equal to

c′2h = c2h
η − 2

η
. (26)

h is the ghost mode when c2 > 0 that implies that it is the ghost for

1 > λ > 1/3 . (27)

On the other hand the dispersion relation for the plane wave eiωt−ikix
i
takes

the form
ω2 = c′2h k

iki (28)

so that there will be no tachyon instability for c′2h > 0. These conditions
imply following allowed ranges of λ and η [9]

λ > 1 , 0 < η < 2 , (29)

or
λ < 1/3 , 0 < η < 2 . (30)

In the second region in the parameter space λ is very far from 1 where
λ = 1 is the value required of general relativity so that the second region
is not considered at all. It is important to stress that the presence of the
operator aia

i in the action (18) that is the lowest order operator which
contributes to the quadratic action has a crucial impact on the consistency
of the theory since now there is a region in parameter space (29) where h is
not ghost and is also classically stable. Note that conclusion is not affected
by inclusion of the higher order operators [14]. It is also important to stress
that when we impose the detailed balance condition the term ηaia

i is not
allowed and hence these nice properties are lost. Further, as we show below,
the non-projectable version without the terms aia

i is non-perturbativelly
inconsistent from the Hamiltonian point of view.
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5.1 Strong coupling

We argued above that the non-projectable version exhibits improved scalar
dynamics with respect to the projectable version on condition when the de-
tailed balance is not imposed. However it is also important to check whether
the scalar mode is strongly coupled at low energies. To do this we have to
consider the cubic action for the scalar [15]

Snp
3 = M2

pl

∫
d3xdt

((
1− 4(1− η)

η2

)
h(∂h)2 − 2

c4h
ḣ∂ih

∂i

∂2
ḣ+

+

(
3

2
+

1

η

)[
1

c4h
h

(
∂i∂j ḣ

∂2

)
−

(2c2h + 1)

c4h
hḣ

])
,

(31)

where 1
∂2 means the operator inverse to the operator ∂2. As the next step we

have to canonically normalize the low energy quadratic action which needs
following redefinition

t =

√
η

2− η

t̂

|ch|
, h =

(
η

2− η

)1/4√
|ch|

ĥ

Mpl
. (32)

Then the cubic action takes the form

Snp
3 =

(2− η)2

η1/2c
′3/2
h Mpl

∫
dt̂d3x

(
c2h

(
1− 8(1− η)

(2− η)2

)
ĥ(∂ĥ)2 − 2ĥ′∂iĥ

∂i

∂2
ĥ′+

+

(
3

2
+

1

η

)[
ĥ

(
∂i∂j
∂2

ĥ′
)2

−
(
2ηc′2h
2− η

+ 1

)
ĥ(ĥ′)2

])
,

(33)

where now h′ = dh
dt̂
. We see that the cubic interactions are suppressed with

respect to the quadratic ones by various scales f(|λ − 1|, η)Mpl where f is
an algebraic function whose form depends on which term we consider.

We know that |λ− 1| and η measure deviations from Lorentz invariance
which occur at arbitrary low scales. Of course, they have to be small for
the theory to avoid experimental constraints on Lorentz violations. Let us
consider the most interesting case where c′h ∼ 1 which is the value prefered
some experimental constraints. Then we have η ∼ |λ − 1| and it turns out
that the strong coupling scale occurs at Msc ∼ 1015GeV . In other words the
strong coupling scale is too high to be phenomenologically accessible. On the
other hand the fact that there is a strong coupling scale implies the serious
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question considering the renormalizability of the theory since the arguments
of the renormalizability were based on presumption that the perturbative
treatment can be used to arbitrary high energies [15].

However the situation is more complicated since the strong coupling
arguments given here do not consider the role of the higher order operators
in the action. The way how to deal with these operators was proposed in
[16]. It was argued there that in order to avoid the strong coupling we have
to lower the scale that supresses the higher order operators in the action
(18) below Msc. In other words we have to impose MA ∼ MB ∼ M∗ where
M∗ < Msc. However this procedure clearly requires an introduction of a
second scale that is different from Mpl and also a hierarchy of scales. We
also need a large dimensionless coupling since Mpl ≫ M∗. On the other hand
it was argued in [16] that this is technically natural. Explicitly, the careful
analysis shows that M∗ has to constrained as [15, 16]

1015GeV & M∗ & 1011GeV . (34)

This result suggests that there is a comfortable invterval forM∗ within which
non-projectable HL gravity avoids the strong coupling and also detectable
Lorentz violations at least with current experimental accuracy.

6 Hamiltonian Formalism

It is very instructive to perform the Hamiltonian formulation of the HL
gravity. It turns out that it is crucial whether we consider either projectable
or non-projectable version. On the other hand the detailed balance does
not play any significant role in the Hamiltonian formulation. The reason
why we perform the Hamiltonian formulation is that it is very powerful in
the analysis of the constraint structure and determining the number of the
physical degrees of freedom even in the case of the full non-linear theory.

6.1 Projectable HL gravity

In this section we review the Hamiltonian formulation of the projecable HL
gravity, following mainly the original formulation [2, 3] 2.

In case of the projectable version we have N = N(t) and the Hamilto-
nian formulation is rather straightforward. More explicitly, let us consider
following general action

S =

∫
dtd3xN

√
g(KijGijklKkl − V(h)) , (35)

2More detailed treatment can be found in accompanied papers.
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where Kij is the extrinsic derivative

Kij =
1

2N
(∂tgij −∇iNj −∇jNi) , (36)

and where the generalized metric Gijkl is defined as

Gijkl =
1

2
(gikgjl + gilgjk)− λgijgkl , (37)

where λ is real constant. Finally V(g) is general function of gij and its
covariant derivative. Now we are ready to perform the Hamiltonian analysis
of theory defined by the action (35). We firstly determine the momenta
conjugate to N,N i, gij from (35)

pN (x) =
δS

δ∂tN(x)
≈ 0 , pi(x) =

δS

δ∂tNi(x)
≈ 0 ,

pij(x) =
δS

δ∂tgij(x)
=

1

κ2
√
gGijklKkl .

(38)

Then it is easy to find corresponding Hamiltonian

H =

∫
d3x(NHT +N iHi) , (39)

where

HT =
κ2
√
g
πijGijklπ

kl +
1

κ2
√
gV ,

Hi = −2gik∇jπ
jk .

(40)

Now the requirement of the stability of the primary constraints pN ≈ 0 , pi(x) ≈
0 implies following secondary constraints:

∂tpN = {pN ,H} = −
∫

d3xHT ≡ −ΦN ≈ 0 ,

∂tpi = {pi,H} = −Hi ≈ 0 .

(41)



6 HAMILTONIAN FORMALISM 19

It is important to stress that ΦN is the integrated constraint unlike the local
Hamiltonian constraint in general relativity which is a direct consequence of
the projectability condition. Clearly by definition we find

{ΦN ,ΦN} = 0 ,
{
ΦN ,TS(N

i)
}
= 0 (42)

where TS(N
i) =

∫
d3xN iHi. This result shows that ΦN is the first class

constraint. However since ΦN is global constraint it cannot affect the local
dynamics which means that cannot be gauge fixed in order to eliminate
some degree of freedom. In fact, the local constraints are pi ≈ 0,Hi ≈ 0. As
a result we find that the projectable version of the HL gravity contains one
additional propagating scalar mode with respect to the general relativity
with all crucial consequences that were reviewed above.

6.2 Non-projectable version of HL gravity

Let us now consider non-projectable case when the requirement of the pre-
servation of the constraint pN (t,x) ≈ 0 implies an existence of the secondary
constraint

HT (x) ≈ 0 . (43)

Now however the crucial point is that for general form of the potential V
given theory is non-consistent [17, 18, 19]. This inconsistency follows from
the calculation of the Poisson brackets between the smeared forms of the
constraints HT

{TT (N),TT (M)} =

∫
d3x(N(Eijk

3 DijkM − Eij
2 DijM + Ei

1DiM + E0M) ,

(44)

where Ei1...in
n , n = 0, 1, 2, 3 are tensor densities that depend on the canonical

variables hij , π
ij and their spatial derivatives and where also Dij = D(iDj)

etc.
Now in order to have the Hamiltonian constraint (43) to be preserved

under time evolution we should calculate the Poisson bracket between (43)
and H =

∫
d3xN(x)H(x). Using (44) we find that in order the constraint

HT to be preserved we have to demand

Eijk
3 DijkN − Eij

2 DijN + Ei
1DiN + E0N ≈ 0 . (45)

There are now two possible ways how to interpret the condition (45). The
first one is to regard it as a new secondary constraint that imposes further
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constraints on the variables hij and πij . Considering N to be arbitrary we
find following additional constraints

Eijk
3 ≈ 0 , Eij

2 ≈ 0 , Ei
1 ≈ 0 , E0 ≈ 0 . (46)

For generic potential we find a over constrained theory with no gravitational
dynamics since all degrees of freedom are fixed. Since this is rather dissapoin-
ting result we mean that we should consider the second interpretation which
seems to be more natural. Explicitly, we claim that (45) is the condition for
the lapse N that has the role of a Lagrange multiplier in the action. We
also mean that this is more natural interpretation from the point of view of
the general analysis of the constrained systems [20]. The detailed analysis of
the equation (45) performed in [18] showed that the only solution of (45) is
N = 0. This is very unsatisfactory result that implies that the Hamiltonian
is zero and hence there is no time evolution.

In summary, we either have too few gravitational degrees of freedom
or there is no time evolution at all. Then we claim that given theory is
dynamically inconsistent.

6.3 Healthy extended Hořava-Lifshitz gravity

It turns out that there is a way how to extend non-projectable HL gravity
which could be dynamically consistent [14]. As we reviewed above the ex-
tension consists with the introducing the variable ai =

∂iN
N to the potential

so that it now has the form V = V(g, ai). The Hamiltonian analysis of this
theory was firstly performed in [21] that was further elaborated in [22]. Let
us briefly review the analysis presented in [21]. We consider the action in
the form

S = M2
p

∫
dtd3xN

√
h(KijGijklKkl − V(hij , ai)) . (47)

The momenta conjugate to N,N i are the primary constraints of the theory

πN ≈ 0 , πi ≈ 0 . (48)

Now the total Hamiltonian has the same form as above when the Hamilto-
nian constraint is

H0 =
1

M2
p

√
h
πijGijklπ

kl +M2
p

√
hV(hij , ai) . (49)

Note the crucial difference with the previous case when now the potential
depends on ai. In fact, the requirement of the preservation of the constraints



6 HAMILTONIAN FORMALISM 21

πN ≈ 0, πi ≈ 0 leads to the secondary constraint

C = H0 −
1

N
DiV

i ≈ 0 , Hi ≈ 0 , (50)

where we defined the vector density

V i(x) = M2
p

δ

δai(x)

∫
N
√
hV(hij , ai) . (51)

The momentum constraints Hi are the same as in projectable case and their
smeared forms are generators of spatial diffeomorphism. It is important that
C ≈ 0 depends on N and its spatial derivatives. This fact implies

{C, pN} ̸= 0 (52)

which shows that C and πN are the second class constraints that may be used
for eliminating N and πN from the set of canonical variables. More precisely,
for general potential the constraint C is quite complicated partial differential
equation for the lapse and we presume that there exists the solution of this
constraint. The scalar constraint determines N up to a constant rescaling a
time-dependent prefactor. This freedom left in N is associated with a time
reparameterization symmetry.

It turns out that there is another first class constraint. Let us consider
the combination

ΠN =

∫
d3xNpN ≈ 0 (53)

that has following non-zero Poisson brackets

{N,ΠN} = N , {πN ,ΠN} = −πN . (54)

It turns out that the vector ai is invariant

{ai,ΠN} = 0 . (55)

It is important to check the stability of the constraint ΠN

∂tΠN = {ΠN , HT } = −
∫

d3xNH0 ≡ −Φ0 ≈ 0 . (56)

In other words there is the second global constraint

Φ0 =

∫
d3xNH0 . (57)
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It turns out that ΠN has weakly vanishing Poisson brackets with all con-
straints and hence it is the first class constraint.

As the final point we have to check the stability of the secondary constra-
ints. We are not going to discuss the stability of the spatial diffeomorphism
constraints since it is trivial and we focus on the constraint C. Let us consider
the total Hamiltonian that contains all constraints in the form

HT =

∫
d3x(NH0 + ΓC + wNNpN ) , (58)

where we ignored constraints related to the spatial diffeomorphism πi ≈
0 ,Hi ≈ 0. Now the requirement of the stability of the constraint πN ≈ 0
implies

∂tπN = {πN ,HT } ≈
∫

d3xΓ(x) {πN , C(x)} = 0 . (59)

The equation above becomes the partial differential equation for Γ that has
solution Γ = 0. Then the requirement of the stability of the constraint C
implies

{C,H} =

∫
d3xN ({C,H0(x)}+ wN (x) {C, pN (x)}) = 0 . (60)

This equation can be solved for wN . It is important to stress that wN is
not completely solved by (60) that determines w up to a solution of the
homogeneous equation∫

d3xN(x)wN (x) {C, pN (x)} = 0 . (61)

This has the solution when wN = κ since in this case this Poisson bracket
is zero due to the fact that it is equal to {ΠN , C} and as we argued above
this is zero. In other words the general solution of the equation (60) is

wN = w̄N [hij , π
ij , N ] + κ , (62)

where w̄N [hij , π
ij , N ] is particular solution of (60). This solution can be

substituted back into the Hamiltonian and we obtain the final form of the
Hamiltonian

H =

∫
d3xN(H0 + w̄NpN ) + κ

∫
NpN , (63)

where we see that the Hamiltonian is linear combination of the first class
constraints Φ0 and ΠN where the first one is the generator of the global time
reparameterization and the second one corresponds to the constant rescaling
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of N . Note that the constraints C, πN are the second class constraints that
vanish strongly and can be used to express N as the function of the phase
space variables. For detailed treatment see [22]. It is important to stress
the now we have consistent theory from the Hamiltonian point of view that
however still contains an additional scalar mode. However as we argued
above it is possible to choose parameters in the potential in such a way that
given model is phenomonologically acceptable.

7 Conclusion

Hořava-Lifshitz gravity is very promising attempt how to define renormali-
zable theory of gravity. We shown that there are two versions: projectable
or non-projectable Hořava-Lifshitz gravity. We argued that the projectable
version suffers from serious problems due to the presence of the scalar mode
which is either clasically or quantum mechanically unstable and also exhi-
bits a strong coupling at low energies. On the other hand non-projectable
version, when all operators allowed by symmetries are included, seems to
evercome all these problems.

Despite the intensive study of HL gravity there are still open issues with
it. There are following two most important ones: It was argued that the
theory is power-counting renormalizable. Even if this is a strong indication
of UV completeness the renormalizability beyond the power counting has
not be proved yet. Further, the renormalization group flow of the various
couplings has not been studied and hence we do not really know whether
the theory approaches general relativity in IR (λ → 1 , η → 0) or not. The
second important problem is to analyze the role of matter and its coupling
to the gravity. The matter action will have to include higher order spatial
derivatives that implies that there will be modifications in the dispersion re-
lations of matter fields. Clearly such a modifications have to be restricted by
experimental bounds. Further, the coupling between matter and the scalar
graviton could lead to violations of the equivalence principle. We see that
more work is needed in order to see whether HL gravity is the right way in
the construction of the renormalizable theory of gravity.

The author of this thesis also believes that the results described in the
thesis are very important and bring new information about various topics in
Hořava-Lifshitz gravity, especially in its Hamiltonian formulation and F (R)
generalization.
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8 The papers

Paper I

In this paper we propose new non-relativistic p+1 dimensional theory. This
theory is defined in such a way that the potential term obeys the principle of
detailed balance where the generating action corresponds to p-brane action.
This condition ensures that the norm of the vacuum wave functional of p+1
dimensional theory is equal to the partition function of p-brane theory.

Paper II

The program initiated in the previous paper was continued in the second
paper. We extend the analysis presented there to the case of stable and
unstable Dp-branes.

Paper III

This paper is devoted to the construction of new type of f(R) theories of
gravity that are based on the principle of detailed balance. It is a gene-
ralization of the original Petr Hořava’s idea of construction of the general
relativity based on the principle of detailed balance. We discuss two versions
of these theories with and without the projectability condition.

Paper IV

In this paper we continue our analysis of generalized f(R) theories of gravity
that we began in previous paper. We introduce new models of f(R) theories
of gravity that are generalization of Horava-Lifshitz gravity.

Paper V

Here we discuss the Hořava-Lifshitz gravity from different point of view. We
generalize the analysis of the dynamics of point particle in Horava-Lifshitz
background to the case of string probe when we replace the Hamiltonian
constraint of the Polyakov string with the constraint that breaks Lorentz
invariance of target space-time. Then we find corresponding Lagrangian and
argue that the world-sheet theory is invariant under foliation preserving
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diffeomorphism. Finally we discuss the Hamiltonian dynamics and show that
this is well defined on condition that the world-sheet lapse function obeys
the projectability condition.

Paper VI

This note is devoted to the study of Hamiltonian formalism of modified F(R)
Horava-Lifshitz theories of gravity that were proposed in [23]. We also study
Hamiltonian formulation of the healthy extended Horava-Lifshitz gravities
and show that these theories have many unusual properties that imply their
possible inconsistency.

Paper VII

In this paper we continue the study of the Hamiltonian formalism of the
healthy extended Hořava-Lifshitz gravity. We find the constraint structure
of given theory and argue that this is the theory with the second class
constraints. Then we discuss physical consequence of this result. We also
apply the Batalin-Tyutin formalism of the conversion of the system with
the second class constraints to the system with the first class constraints to
the case of the healthy extended Hořava-Lifshitz theory.

Paper VIII

We continue our study of the Lorentz breaking string theories. These theories
are defined as string theory with modified Hamiltonian constraint which
breaks the Lorentz symmetry of target space-time. We analyze properties
of this theory in the target space-time that possesses isometry along one
direction. We also derive the T-duality rules for Lorentz breaking string
theories and show that they are the same as that of Buscher’s T-duality for
the relativistic strings.

Paper IX

In this paper we formulate RFDiff invariant f(R) Horava-Lifshitz gravity
that are theories which are invariant under restricted diffeomorphism

x′i = xi + ζi(x, t) , t′ = t+ δt , δt = const . (64)
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We show that these theories are related to the ghost condensation in the
projectable version of Horava-Lifshitz gravity.

Paper X

We perform the Hamiltonian analysis of non-relativistic covariant Horava-
Lifshitz gravity in the formulation presented recently in [24]. We argue that
the resulting Hamiltonian structure is in agreement with the original con-
struction of non-relativistic covariant Hořava-Lifshitz gravity presented in
[7]. Then we extend this construction to the case of RFDiff invariant Hořava-
Lifshitz theory. We find well behaved Hamiltonian system with the number
of the first and the second class constraints that ensure the correct number
of physical degrees of freedom of gravity.

Paper XI

This paper is devoted to the study of various aspects of projectable F (R)
Hořava-Lifshitz gravity. We show that some versions of F (R) Hořava-Lifshitz
gravity may have stable de Sitter solution and unstable flat space solution.
In this case, the problem of scalar graviton does not appear because flat
space is not vacuum state. Generalizing the U(1) Hořava-Lifshitz theory
proposed in [7], we formulate U(1) extension of scalar theory and of F (R)
Hořava-Lifshitz gravity. The Hamiltonian approach for such the theory is
developed in full detail. It is demonstrated that its Hamiltonian structure
is the same as for the non-relativistic covariant Hořava-Lifshitz gravity. The
spectrum analysis performed around flat background indicates towards the
consistency of the theory because it contains graviton with only transverse
polarization.

Paper XII

We consider RFDiff invariant Hořava-Lifshitz gravity action with additional
Lagrange multiplier term that is a function of scalar curvature. We find its
Hamiltonian formulation and we show that the constraint structure implies
the same number of physical degrees of freedom as in general relativity.
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Paper XIII

We formulate higher derivative gravity with Lagrange multiplier constraint
and scalar projectors. Its gauge-fixed formulation as well as vector fields
formulation is developed and corresponding spontaneous Lorentz symmetry
breaking is investigated. We show that the only propagating mode is higher
derivative graviton while scalar and vector modes do not propagate.

Paper XIV

We construct Hořava-Lifshitz gravities that are invariant under anisotropic
Weyl scaling. This construction is based on an extension of the group of
symmetries of healthy extended Hořava-Lifshitz gravity and RFDiff inva-
riant Hořava-Lifshitz gravity. We find their Hamiltonian formulation and
determine their constraint structure.

Paper XV

In this note we study the relation between F(R) and scalar tensor Horava-
Lifshitz gravity. We find that due to the broken diffeomorphism invariance
corresponding scalar tensor theory has more complicated form than in case
of the full diffeomorphism invariant F(R) theory of gravity. We also show
that in the low energy limit this theory flows to the relativistic scalar tensor
theory of gravity.

Paper XVI

In order to explore some general features of modified theories of gravity
which involve higher derivatives and spontaneous Lorentz and/or diffeomor-
phism symmetry breaking, we study the recently proposed new version of
covariant renormalizable gravity (CRG). CRG attains power-counting renor-
malizability via higher derivatives and introduction of a constrained scalar
field and spontaneous symmetry breaking. We obtain an Arnowitt-Deser-
Misner representation of the CRG action in four-dimensional spacetime with
respect to a foliation of spacetime adapted to the constrained scalar field.
The resulting action is analyzed by using Hamiltonian formalism. We dis-
cover that CRG contains two extra degrees of freedom. One of them carries
negative energy (a ghost) and it will destabilize the theory due to its in-
teractions. This result is in contrast with the original paper [25], where it
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was concluded that the theory is free of ghosts and renormalizable when we
analyze fluctuations on the flat background.
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