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Resumé
The dissertation tackles an interesting inverse problem of estimating a latent
sharp image from blurred observed images. The blurring process is modeled
by convolution and the inverse problem is referred to as “blind” deconvolu-
tion since we assume limited or zero knowledge of the convolution kernel. A
wide range of degradation processes that occur during data acquisition can be
modeled or at least well approximated by convolution. Camera/object mo-
tion, camera optics, turbulence of a measuring media such as the atmosphere
are some of the examples. A frequent encounter of convolution in diverse
application areas makes the deconvolution problem particularly appealing.

The dissertation consists of seven scientific articles that survey author’s
contribution to the theory of image deconvolution. The common framework
in the presented collection is a multichannel scenario, i.e., the same scene is
captured more than once and each observed image contains a slightly different
convolution kernel (blur). We show that under the assumption of multichannel
acquisition we have tools to estimate blurs directly from the observed images
without any prior knowledge of the kernel shape. Further we show that for-
mulating blind deconvolution as an energy minimization problem provides the
necessary robustness in the case of noisy acquisitions, which is essential for
usability of blind deconvolution in practical applications.

Real data seldom follow the mathematical model precisely. This is either
due to unknown perturbations or the acquisition model is more complicated
than the assumed mathematical model. A common problem encountered in
practice is misregistration of input images. It is hard to guarantee that during
multiple acquisitions the observed images will be spatially aligned. We show
that the proposed multichannel blind deconvolution method automatically
estimates translation among images by shifting the estimated convolution
kernels in the correct direction, which makes the method robust to slight
misalignment of input images.

Another common problem is that input images have insufficient spatial
resolution. Increasing the image resolution is called superresolution. The
aliasing effect is important in this case as the high-resolution details are re-
covered from the overlapping image spectra. We propose to address both de-
convolution and superresolution in one common framework resulting in a blind
superresolution method, which simultaneously estimates convolution kernels
and the sharp image in the high-resolution domain. In practice the maximum
meaningful resolution factor we can achieve (often between 2× and 3×) is lim-
ited by the number of input images and discrepancies from the mathematical
model. We show that the theory of blind superresolution derived for integer
resolution factors is easily extendable to rational factors using a polyphase
decomposition.

Current images have many millions of pixels and fast, close to real time,
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deconvolution methods are preferred. Recent progress in the direction of fast
numerical optimization methods is included in the dissertation.

The final two articles in the collection illustrate applicability of blind de-
convolution in ophthalmology and mobile phone photography. Images of eye
retina, analyzed by ophthalmologists are often blurred due to eye movement
and pupil imperfections. We demonstrate in the first paper that multichannel
blind deconvolution could be a useful tool for obtaining sharp retina images
and therefore improving retina defect diagnosis. The second paper reviews
our progress in implementing blind deconvolution in embedded device such as
smartphones.

1 Introduction
This dissertation addresses one of the core problems of image processing,
which is estimating an image from its degraded observations (measurements).
Processing images becomes an every-day practice in a wide range of appli-
cations in science and technology and we rely on images with ever growing
emphasis. Our understanding of the world is however limited by measur-
ing devices that we use to acquire images. Inadequate measuring conditions
together with technological limitations of the measuring devices result in ac-
quired images that represent a degraded version of the “true” image. Fig. 1
illustrates examples of acquired images under real conditions versus ideal con-
ditions in three different application areas. It is important to underline that
the ideal conditions may not be achievable in practice and that the only so-
lution to get the ideal image is to estimate it from the acquired ones.

The relation between the true latent image u and the degraded observed
image g is given by a formula

g = Hu+ n , (1)

where H is the degradation operator and n is additive noise. By the word
“degradation” we loosely mean an operator that diminishes or completely
removes high frequency information (details) from images. The difficulty with
H is that it is ill-conditioned, which means that during inversion noise n gets
amplified and the solution is unstable. We face an ill-posed inverse problem
that requires special handling. Our scenario is even more complicated as H
is unknown, but we assume that it belongs to a certain type of degradation.

The most common type of degradation, which is considered in the disser-
tation, is convolution:

Hu(x) =

∫
h(x− t)u(t)dt , (2)
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Figure 1: Examples of acquired images under degraded conditions (top row)
and ideal nonviable conditions (bottom row) in three application areas: pho-
tography (house), microscopy (biological specimen), astronomy (sunspot).

where x, t ∈ R2 for images. This definition extends to any number of dimen-
sions and not just R2. For example in confocal microscopy, convolution is in
R3. Function h is a convolution kernel (or simply blur) and defines the behav-
ior of the convolution operator. It is also called a point spread function (PSF),
because h is an image the device would acquire after measuring an ideal point
source δ(x) (delta function). Image blur due to camera motion or improper
camera focus setting can be modeled by convolution. The degree of blurring
influences the PSF size and the physical nature of blurring determines the
PSF shape. For example, out-of-focus camera lens causes convolution with
a cylindrical PSF, or camera motion causes convolution with a curvy PSF,
where the curve shape is related to the trajectory of the motion; see Fig. 2.
There is a wide range of imaging devices, in which the acquisition process
can be modeled by convolution. Apart from devices with classical optical sys-
tems, such as digital cameras, optical microscopes or telescopes, convolution
degradation occurs also in atomic force microscopy (AFM) or scanning tun-
neling microscopy (STM), where the PSF shape is related to the measuring
tip shape. Media turbulence (e.g. atmosphere for terrestrial telescopes) can
cause blurring that can be modeled by convolution, and there are many more
examples. To make convolution more general, it is often necessary to allow
the PSF to change over the image. In (2), h becomes a function of x as well,
i.e. h(x, t). This is called space-variant convolution, though strictly speaking
it is not mathematical convolution any more. Using space-variant convolution
we can model more general degradations, such as blur induced by complex
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Figure 2: Examples of real camera blurs: (left) three blurs caused by out-
of-focus lens with different lens parameters (focal length and aperture size),
notice polygonal shape clearly visible in the central image, which corresponds
to the aperture opening of 7-blade diaphragm; (right) three blurs caused by
camera motion during exposure.

camera motion and rotation, out-of-focus blur in a wide-depth scene, or blur
due to hot-air turbulence. Volumes acquired by a confocal microscope are
in general degraded by 3D space-variant blur, which renders this particular
problem even more challenging.

Deconvolution, as the name suggests, refers to the process of inverting the
convolution operator H. Blind deconvolution denotes the case when the PSF
is also unknown. If only one image g is observed then we call this problem
single-channel blind deconvolution.

We can have more observations of the latent image u and write

gk = Hku+ nk , (3)

where gk is the k-th degraded image. Notice that the degradation operator
can be different, i.e. PSF hk is different for different k. Indeed it is highly
desirable that the PSFs differ, since then multiple observations may convey
complementary information. The estimation of the latent image u from the
multiple observations gk’s without any knowledge of hk’s is referred to as
multichannel blind deconvolution and this is the main topic of the selected
publications, which the dissertation consists of.

An interesting extension of the above degradation operator, which is also
discussed in the dissertation, is to consider in addition to convolution H a
decimation operator D and rewrite model (3) as

gk = DHku+ nk . (4)

The decimation operator D models sampling on a camera sensor, which is af-
fected by diffraction, shape of light sensitive elements and void spaces between
the elements. Including D in the model allows us to increase spatial resolution
of images. The corresponding inverse problem is called superresolution.

Section 2 overviews the evolution of state of the art in the last 10 years
during which the author of the dissertation has contributed to the field of
image restoration. This section discusses the development in a slightly wider
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perspective than the dissertation topic and includes also references to author’s
research articled that are not part of the dissertation collection.

Section 3 lists published research articles that make up the dissertation
and for each article gives a brief overview of the main ideas and contribution
to the state of the art.

2 State of the art
Recovering u from g even in the nonblind case is not straightforward. A
standard technique is to convert the deconvolution problem to energy mini-
mization [1]. The core term in the energy function implied by the model (1)
is called a data-fitting or fidelity term and takes the form

E(u) = ‖g −Hu‖22 , (5)

where ‖ · ‖p denotes the Lp norm. In this case, finding the minimum of
û = argminuE(u) is equivalent to a lease-square fit. The difficulty of finding
the minimum of (5) resides in the degradation operator H. Since blurring
diminishes high frequency information (image details), the spectrum of H
contains zeros or values close to zero. Therefore, H is generally not invertible.
To overcome this, the idea is to regularize the problem by considering a related
problem that admits a unique solution.

A classical way to solve ill-posed minimization problems is to add regu-
larization terms. Regularization conveys additional prior knowledge of the
original image u to the energy function. Priors are application dependent and
general rules for constructing the priors are hard to find. Nevertheless, study-
ing image statistics shows that the majority of natural images contain smooth
regions with abrupt changes of intensity values at object boundaries that cor-
respond to edges. An image gradient is a useful feature, which can distinguish
between edges and smooth regions. Therefore, regularization terms are often
functions of ∇u = [ux1

, ux2
]. The Lp norm for p ≤ 1 of the image gradient (a

special case of p = 1 is called total variation [2]), is a popular choice for the
image regularization term. Then the regularized energy becomes

E(u) = ‖g −Hu‖22 + λ‖∇u‖pp . (6)

Parameter λ is a positive weighting constant. The first term forces the solution
to be close to the observed data and the second one guarantees that the
solution is sufficiently smooth in the Lp norm sense. Noise is removed in
smooth regions, while edges are not excessively penalized, since we use Lp

norm for p ≤ 1 instead of L2 norm.
In blind image restoration, the energy E becomes a functional of two

unknowns, original image u and degradation H. In our case of convolution,
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H is parametrized by PSF h. If both u and h are unknown, the problem is
underdetermined and some additional information (e.g. regularization of h) or
different minimization strategy is necessary. For example, so called “no-blur”
solution, when û = g and ĥ = δ, is one of the unwanted solutions, which gives
the blurred input as the latent image and the delta function as the estimated
PSF. Many commonly used energy functions get trapped in “no-blur” solution.

Another standard formulation of the image restoration problem is stochas-
tic [3] assuming that the images and PSFs are random vector fields [4] with
known prior probability distribution functions p(u) and p(h), respectively.
The Bayesian paradigm dictates that the inference on the latent image and
PSF should be based on the posterior probability

p(u, h|g) ∝ p(g|u, h)p(u)p(h) , (7)

where u and h are assumed to be independent. The conditional distribution
p(g|u, h) is given by our model (1). Suppose that n is white Gaussian noise
then the logarithm of the conditional distribution is equivalent to (5). Differ-
ent noise distributions result in different data-fitting terms. For example, the
Laplace distribution implies E(u) = ‖z −Hu‖1. Estimating the pair (û, ĥ) is
equivalent to maximizing the posterior p(u, h|g), which is commonly referred
to as the maximum a posteriori (MAP) approach. Note that maximization
of the posterior is equivalent to minimization of − log p(u, h|g), which is an
energy minimization task (6), where the priors play a role of regularization
terms. The simplest but also the most common method maximizes the pos-
terior in an alternative manner with respect to u and h. Unfortunately, the
posterior has very uneven shape with many local peaks and alternating max-
imization often returns an incorrect solution.

In the case of single-channel blind deconvolution, proposed approaches
include stronger regularization both on the image and blur and above all
must use more sophisticated estimation procedures as discussed in Sec. 2.1.
The multichannel case discussed in Sec. 2.2 permits estimation of the blurs
without any prior knowledge of their shape. The space-variant case with
parametric approaches is covered in Sec. 2.3.

2.1 Single-channel blind deconvolution
One way to tackle the problem, when we have only one observation and no
knowledge of the PSF, is to assume a parametric model of the PSF and
search in the space of parameters and not in the full space of PSFs. Chang
et al. in [5] investigated zero patterns of the Fourier transform or cepstrum,
and assumed only parametric motion or out-of-focus blurs. More low-level
parametric methods for estimating general motion blurs were proposed in
[6, 7, 8, 9]. Parametric methods have two disadvantages. They are more

10



restrictive than the fully blind ones and they can also be computationally
more demanding. Even if minimization with respect to the unknown PSF is
linear, minimization with respect to one of the parameters of the PSF does
not have to be linear and thus effective methods for solving linear problems
can not be applied. Real PSFs always differ slightly from their parametric
models and this prevents the parametric methods to find an exact solution.

There has been a considerable effort in the image processing community
in the last three decades to find a reliable algorithm for single-channel blind
deconvolution. First algorithms appeared in telecommunication and signal
processing in early 80’s [10]. For a long time, the problem seemed too difficult
to be solved for complex blur kernels. Proposed algorithms usually worked
only for special cases, such as astronomical images with uniform (black) back-
ground, and their performance depended on initial estimates of PSFs; see
[11, 12, 13].

Over the last few years, single-channel blind deconvolution experiences a
renaissance. The key idea of new algorithms is to address the ill-posedness
of blind deconvolution by characterizing the prior p(u) using natural image
statistics and by a better choice of estimators. The idea of natural image
statistics was recently explored by the author of the dissertation in [14]. A
heated activity started with the work of Fergus et al. [15], who applied varia-
tional Bayes to approximate the posterior p(u, h|g) by a simpler distribution
q(u, h) = q(u)q(h). Other authors [16, 17, 18, 19] stick to the “good old”
alternating MAP approach, but by using ad hoc steps, which often lack rig-
orous explanation, they converge to a correct solution. Levin et al. in [20, 21]
proved that a proper estimator matters more than the shape of priors. They
showed that marginalizing the posterior with respect to the latent image u
leads to the correct solution of the PSF h. The marginalized probability
p(h|g) can be expressed in a closed form only for simple priors that are, e.g.,
Gaussian. Otherwise approximation methods such as Variational Bayes [22]
or the Laplace approximation [23] must be used.

2.2 Multichannel blind deconvolution
The framework of multiple observations as defined in (3) provides the nec-
essary constraint to make the image restoration task well posed. One of the
earliest intrinsic multichannel blind deconvolution methods [24] was designed
particularly for images blurred by atmospheric turbulence. Harikumar et al.
[25] proposed an indirect algorithm, which first estimates the blur functions
and then recovers the original image by standard nonblind methods. The blur
functions are equal to the minimum eigenvector of a special matrix constructed
from the blurred images, which is the same idea published earlier for 1D sig-
nals in [26]. Necessary assumptions for perfect recovery of the blur functions
are noise-free environment and channel coprimeness, i.e. a scalar constant is
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the only common factor of the blurs. Giannakis et al. [27] developed another
indirect algorithm based on Bezout’s identity of coprime polynomials which
finds restoration filters and by convolving the filters with the observed images
recovers the original image. Both algorithms are vulnerable to noise and even
for a moderate noise level restoration may break down. In the latter case,
noise amplification can be attenuated to a certain extent by increasing the
restoration filter order, which comes at the expense of deblurring. Pai et al.
[28] suggested two multichannel restoration algorithms that estimate directly
the original image from the null space or from the range of a special matrix.
Another direct method based on the greatest common divisor was proposed
in [29]. Interesting approaches based on the ARMA (autoregressive moving
average) model are given in [30]. Multichannel blind deconvolution based on
the Bussgang algorithm was proposed in [31], which performs well on spatially
uncorrelated data, such as binary text images and spiky images. Most of the
algorithms lack the necessary robustness since they do not include any noise
assumptions in their derivation and miss regularization terms. The author of
the dissertation proposed an iterative multichannel algorithm [32] that per-
forms well even on noisy images. It is based on least-squares deconvolution
by anisotropic regularization of the image and between-channel regularization
of the blurs. Another drawback of the multichannel methods is that the ob-
served images must be spatially aligned, which is seldom true. A first attempt
in this direction was done by the author in [33], where blind deconvolution
of images that are mutually shifted by unknown vectors was proposed. The
author extended this idea to superresolution in [34]. In superresolution, the
physical resolution of the image is increased, which is equivalent to considering
both convolution and decimation as in (4).

Blind deconvolution in the multichannel framework is in general a well-
posed inverse problem. However, in many practical situations we do not
have multiple observation of the same scene, which would differ only by the
convolution kernel, and we must revert to the single-channel case.

2.3 Space-variant blind deconvolution
Space-variant blind deconvolution is even more complicated as the PSF is also
a function of the position vector. As a rule, the space-variant PSF cannot be
expressed by an explicit formula but in many cases it has a special structure
that can be exploited. For example, the blur caused by camera rotation is
limited by three degrees of freedom of rigid body rotation. If we have an
estimate of the camera rotation from inertial sensors [35] or other sources
[36, 37, 38], we are able to reconstruct the PSF and recover the latent image.
Unfortunately, in practice, the PSF must be estimated directly from the input
images. If only one type of blur source is considered (e.g. rotation), we can
express the degradation operator as a linear combination of basis blurs (or
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images) and solve the blind problem in the space of the basis, which has much
lower dimension than the original problem. Whyte et al. [39] considered
rotations about three axes up to several degrees and described blurring using
three basis vectors. For blind deconvolution, they used an algorithm analogous
to [15] based on marginalization over the latent sharp image. Gupta et al. [40]
and Hirsch et al. [41] adopted a similar approach, replacing rotations about
x and y axes by translations. Removing out-of-focus blur is a more complex
problem, since the PSF depends on object distance and we need to estimate
also the depth map as was proposed in [42, 43].

If the PSF changes smoothly over the image, the PSFs can be considered
as constant on a small neighborhood and estimated on a regularly spaced
grid. This idea has been proposed by the author of the dissertation in [44]
and later extended to superresolution in [45]. For estimation, we can apply
locally single-channel blind deconvolution methods [46, 47], or if a pair of
blurred and noisy/underexposed images is available, multichannel methods
[48, 49]. Recently, more accurate parametric interpolation of PSFs on the
grid has been proposed by the author in [50].

An especially difficult situation is that of the blur caused by object motion,
as objects usually move independently of each other and often in different
directions. In order to achieve a good quality of deblurring, the object must
be precisely segmented, taking into account partial occlusion close to object
outline. Most of the methods [51, 52, 53] follow the pioneering paper of Levin
[54] that assumed that objects move with a constant velocity and segmented
objects based on a statistics of image derivatives. A completely novel method
without the need to segment objects was recently proposed in [55].

3 Research articles in the dissertation
The dissertation is a collection of seven research articles that have one common
theme of multichannel blind restoration. The acquisition model is assumed
to be of the form (3) and in all the cases except one (paper no. 2) the energy
minimization approach is considered. The first five articles are chronologi-
cally sorted and summarize contribution of the author to the theory of blind
deconvolution. The remaining two articles are examples of applied research
articles that illustrate the use of blind deconvolution in practice.

1. F. Šroubek and J. Flusser, “Multichannel blind iterative image restora-
tion,” IEEE Transactions on Image Processing, vol. 12, no. 9, pp. 1094–
1106, 2003.

This research article was the first step in the direction of robust multi-
channel deconvolution methods. We use energy minimization approach
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with regularization. The PSF regularization is based on a simple but el-
egant idea presented originally by Harikumar et al. in [25]. They showed
that by constructing a special matrix from blurred input images, we can
determine PSFs as minimum eigenvalues of the matrix. However, sta-
bility of Harikumar’s method deteriorates quickly with increasing noise.
Instead of using the special matrix directly, we construct from the matrix
a quadratic regularization term, which is intrinsically multichannel as
it couples all the input images and approaches the minimum for correct
PSFs. Then we minimize the regularized energy function with respect to
the image and PSFs. To increase stability even further we include image
regularization based on image gradients, such as Total Variation [56] or
Mumford-Shah functional [57]. The final energy function is convex but
the solution leads to nonlinear equations. This drawback is solved by
a half-quadratic algorithm [58], which converts the problem to a set of
linear equations. A special attention is paid to discretization of image
regularization terms using four-connectivity and eight-connectivity ap-
proximation. The performance of the proposed method is evaluated on
synthetically blurred data and also on camera out-of-focus images and
astronomical data; see an example in Fig. 3.

The main contribution of this research article is in constructing a novel
multichannel regularization term and proposing an iterative method for
blind deconvolution, which is robust to noise and thus suitable for prac-
tical applications.

2. F. Šroubek and J. Flusser, “Multichannel blind deconvolution of spa-
tially misaligned images,” IEEE Transactions on Image Processing, vol. 14,
no. 7, pp. 874–883, 2005.

In this research article, we adopt a stochastic approach to multichannel
blind deconvolution and formulate the restoration problem as a MAP
inference; see (7). Regularization terms are now replaced by prior dis-
tributions of images and blurs. This interpretation introduces covari-
ance matrices that were omitted in the original formulation and allows
us to better understand meaning of weighting parameters in front of
these terms. We also prove that the proposed method can compensate
for a misalignment of input blurred images. From the practical point
of view, this is an important feature. We require multiple (minimum
two) images of the same scene that are blurred in a slightly different
way. Video sequences or continuous shooting in digital cameras often
provide data where neighboring frames (images) depict the same scene
with blurs slightly varying in time. However, such images are rarely
spatially aligned (registered). We can use registration methods in [59]
to geometrically align input blurred images, but registration of blurred
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(a) (b)

(c) (d)

Figure 3: Multichannel blind deconvolution of astronomical data: A sunspot
is observed with a terrestrial telescope and a sequence of images is recorded.
Due to atmospheric turbulence the observations are blurred. Images (a) and
(b) show two blurred observations from the sequence, which are deconvolved
in (d) with the proposed algorithm (estimated PSFs are on the top). Image
(c) is the least degraded observation from the sequence and compare to the
reconstructed image (d) it is still considerably blurred.

images is imprecise. We show that by overestimating the blur support,
the proposed method is able to automatically shift the estimated blurs
and thus cancel spatial misalignment of the images as seen in Fig. 4.

The main contribution of this research article is in built-in compensation
for misalignment of input images, which further increases applicability
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of the proposed method.
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(c) (d)

Figure 4: Robustness to misalignment: Two synthetically blurred images (a)
and (b) were shifted by an unknown number of pixels and deconvolved in
(c) with the proposed algorithm. Note that the estimated PSFs in (d) are
automatically shifted to compensate for misalignment in the input data.

3. F. Šroubek, G. Cristóbal, and J. Flusser, “A unified approach to super-
resolution and multichannel blind deconvolution,” IEEE Transactions
on Image Processing, vol. 16, no. 9, pp. 2322–2332, 2007.

In the previous two research articles, we have developed a theory of
multichannel blind deconvolution. Multiple observations of the same
scene give us one additional benefit. If the observations differ by sub-
pixel shifts we can also increase spatial resolution of the latent image
(superresolution), which is explored in this research article. We assume
the multichannel acquisition model with decimation as defined in (4).
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We prove that even in the presence of the decimation operator D, which
does not commute with the convolution operator H, we can construct
a blur regularization term, which is similar to the regularization term
in the classical multichannel blind deconvolution problem. The regular-
ization term is not strictly convex and approaches the minimum on a
subspace of dimensions proportional to the superresolution factor. The
superresolution factor is a user parameter and determines the final high
resolution of the latent image. With an increasing superresolution factor
the minimum number of input images necessary to construct the regu-
larization term increases proportionally. The regularized energy func-
tion is minimized with respect to the image and blurs as in the case of
multichannel blind deconvolution. However in this case we also recover
the lost spatial resolution of the latent image. We named this problem
blind superresolution. An example of superresolution performance is in
Fig. 5.

The proposed blind superresolution method went way beyond standard
superresolution techniques. While estimating the blurs in the high res-
olution grid of the final latent image, we calculate not only PSFs but
also subpixel shifts. This made it one of the first methods that performs
deconvolution and resolution enhancement simultaneously.

(a) (b) (c)

Figure 5: Superresolution of images acquired with a digital camera: Several
low-resolution images were acquired with the digital camera and superresolu-
tion has been applied. (a) bilinear interpolation of one low-resolution image,
(b) result of the proposed superresolution algorithm, (c) image taken by the
same camera but with optical zoom. The proposed algorithm achieves recon-
struction comparable to the image with optical zoom.

4. F. Šroubek, J. Flusser, and G. Cristobal, “Super-resolution and blind
deconvolution for rational factors with an application to color images,”
Computer Journal, vol. 52, no. 1, pp. 142–152, 2009.

The previous research article demonstrates that superresolution neatly
combines with multichannel blind deconvolution. The minimum number
of input images required for well-posed blind superresolution depends
on the superresolution factor. For example estimating blurs and in-
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input 1.25 1.5 1.75 2.0 2.5 3.0

Figure 6: Superresolution with non-integer factors of short-exposure images.
The first left image is one of ten low-resolution frames acquired by a webcam-
era that were used to estimate high-resolution images. The proposed method
was run with different superresolution factors from 1.25 to 3. The estimated
HR images appear in their original size.

creasing resolution by a factor of 2, requires at least 5 images. If the
factor is 3, we already need 10 images. In many practical applications
it is difficult to guarantee this minimum number. In addition, acquired
images do not follow precisely our mathematical model, which implies
that superresolution factor of more than 2 provides negligible improve-
ment in practice as was experimentally demonstrated. These facts show
that non-integer superresolution factors below two are meaningful as
they require less number of input images and recover high frequency
information. This work uses the notion of polyphase decomposition to
derive PSF regularization terms that work for any rational superreso-
lution factor. We can thus extend conclusions derived in the previous
research article about blind superresolution to factors such as 3/2 = 1.5
(requires 3 input images) or 7/4 = 1.75 (requires 4 input images). Other
improvements discussed in the paper are image regularization terms for
color images, and advantages of image registration performed in the
decimation matrix versus registration done beforehand.

The main goal of this paper has been to extend the theory of blind
superresolution for integer factors to rational factors. Examples of su-
perresolution with different factors are in Fig. 6.

5. F. Šroubek and P. Milanfar, “Robust multichannel blind deconvolution
via fast alternating minimization,” IEEE Transactions on Image Pro-
cessing, vol. 21, no. 4, pp. 1687–1700, 2012.

The quality of image deconvolution is very sensitive to accuracy with
which the PSF is estimated. Disturbing artifacts appear in deconvolved
images due to inaccurate PSF estimation. Using stronger image regu-
larization we can avoid the artifacts but we inevitably loose details. In
the first part of this research article, we analyze the multichannel blur
regularization term and show that its dependence on noise may bias the
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estimation of PSFs in the noisy case. Using filtered images instead of
the original intensity values to construct the blur regularization term
diminishes the bias and improves the accuracy of PSF estimation. The
second part of the paper is dedicated to a fast numerical optimization
method, which would allow blind deconvolution of large images (sev-
eral Mpixels) and large blurs (up to 100 × 100 pixels). Again we use
alternating minimization between two steps: minimization with respect
to the latent image and minimization with respect to the PSFs. How-
ever this time, we solve a nonlinear problem in each step by applying a
variable splitting technique to convert the problem to constrained opti-
mization and then using an augmented Lagrangian method to solve the
constrained optimization. The augmented Lagrangian method is a fast
converging method, which can solve the blind deconvolution problem
in an efficient way. Examples of blind deconvolution of high resolution
photos captured with a DSLR camera conclude the paper. One example
is presented in Fig. 7.

The main contribution of this research article is in improving accuracy
of PSF estimation and providing a fast and reliable multichannel blind
deconvolution algorithm that copes with high-resolution image and large
blurs.

6. A. Marrugo, M. Šorel, F. Šroubek, and M. Millan, “Retinal image restora-
tion by means of blind deconvolution,” Journal of Biomedical Optics,
vol. 16, no. 11, pp. 116016-1-11, 2011.

This applied research article is an example of direct application of multi-
channel blind deconvolution illustrating a step towards computer-assisted
diagnosis and telemedicine in ophthalmology. Here we present a method
for color retinal image restoration by means of multichannel blind de-
convolution. The method is applied to a pair of retinal images acquired
within a lapse of time, ranging from several minutes to months. It con-
sists of a series of preprocessing steps to adjust the images so they com-
ply with the considered degradation model (3), followed by the estima-
tion of the PSF and, ultimately, image deconvolution. The preprocessing
is composed of image registration, uneven illumination compensation,
and segmentation of areas with structural changes. In addition, we have
developed a procedure for the detection and visualization of structural
changes. This enables the identification of subtle developments in the
retina not caused by variation in illumination or blur. The method
was tested on synthetic and real images. An illustration of algorithm’s
performance on real images is in Fig. 8.

The main purpose of this paper has been to investigate a new approach
for retinal image restoration based on multichannel blind deconvolution.
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Figure 7: Fast deconvolution of photos acquired with high megapixel cam-
eras: Two blurry images of size 2048 × 1536 with close-ups in (a) and (b),
respectively, were processed with the proposed algorithm. The close-up of the
estimated output sharp image is in (c) and the estimated large PSFs of size
50× 30 are in (d).

7. O. Šindelář and F. Šroubek, “Image deblurring in smartphone devices
using built-in inertial measurement sensors,” Journal of Electronic Imag-
ing, vol. 22, no. 1, pp. 011003-1-8, 2013.

This is another example of an applied research article. The target ap-
plication is photography on embedded devices. Blur induced by camera
motion is a frequent problem in photography mainly when the light con-
ditions are poor. As the exposure time increases, involuntary camera
motion has a growing effect on the acquired image. Image stabiliza-
tion devices that help to reduce the motion blur by moving the camera
sensor in the opposite direction are becoming more common. However,
such hardware remedy has its limitations as it can compensate only for
motion of a very small extent and speed. Deblurring the image offline
using mathematical algorithms is usually the only choice we have in
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(a) (b)

Figure 8: Original (a) and restored retinal image (b) using the blind decon-
volution method. The images are cropped to represent the region of interest
given by the pathological area. The estimated PSF is shown in the bottom
left corner of the restored image.

order to obtain a sharp image. Motion blur can be modeled by convo-
lution and then the deblurring process is deconvolution. Many devices,
such as modern smartphones, are now equipped with inertial sensors
(gyroscopes and accelerometers) that can give us a very accurate infor-
mation about camera motion. If we are able to reconstruct camera path
then we can recover blur and perform nonblind image deblurring. This
idea was originally described in [35] but the authors have designed an
expensive measuring apparatus consisting of a DSLR camera and a set
of inertial sensors, and perform image deblurring offline on a computer.
Our work is based on the same idea but the aim is to show that image
deblurring is feasible on modern smartphones without the requirement
of other devices; see an example in Fig. 9.

The main contribution of this work is to illustrate that blur estima-
tion with built-in inertial sensors is possible and to implement image
deblurring on a smartphone, which works in practical situations and is
relatively fast to be acceptable for a general user.
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(a) (b)

Figure 9: Smartphone deconvolution application: (a) image acquired with the
phone and blurred due to camera shake, (b) sharp image estimated by the
deconvolution algorithm running on the phone using prior information about
camera motion from phone gyroscopes.

4 Conclusions
The presented dissertation summarizes author’s contribution to the theory of
blind deconvolution in the last ten years. The underlying theme linking the
collection of seven publications that comprise the dissertation is multichan-
nel blind deconvolution. The presented research articles summarize gradual
improvements in the field of blind deconvolution that resulted in a robust
algorithm, which works with misaligned high-resolution blurry images, can
cope with large blurs, and provides solution in short computational time.
Multichannel framework of blind deconvolution is extended to resolution en-
hancement (superresolution), which is covered by two research articles in the
collection. The applicability of the approach has been demonstrated on many
practical examples. A various versions of the restoration algorithm are avail-
able for free for research purposes on the institute web pages. To date, we
file over 1000 downloads of the software, which indicates a high interest of
the research community in this topic. This fact is also supported by a rela-
tively high impact of the presented collection of articles, which is close to 170
citations (according to SCOPUS) in total excluding self-citations.
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