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Summary

We study an interplay between descriptive set theory and theory of
compact convex sets. Theory of compact convex sets serves as a general
framework for an investigation of Banach spaces as well as more general
objects as subsets of Banach spaces, sets of measures etc. Descriptive
set theory provides a way how to measure a complexity of given ob-
jects. Connections between these two di�erent mathematical disciplines
provide a useful insight in both of them.
We recall that theory of Banach spaces is in a way subsumed by theory

of compact convex sets via the following procedure. If E is a Banach
space, its dual unit ball BE∗ endowed with the weak* topology is a
compact convex set and E can be viewed as an isometric subspace of
the space of all a�ne continuous functions on BE∗. Further, BE∗ is a
natural example of a compact topological space. Hence it possesses a
rich Borel structure, i.e., it carries the σ�algebra of all Borel sets in
BE∗. Borel sets can be more �nely distinguished into Borel classes and
thus we may ask what is the class of a given object in BE∗.
The main focus of the research presented in the thesis is the appli-

cation of (nonmetrizable) descriptive set theory in theory of compact
convex sets. First we build a theory of Borel classes in topological spaces
and show their stability with respect to perfect mappings. This property
turns out to be of utmost importance for the applications in the second
chapter of the thesis. Since the notion of a�ne Baire-1 functions is stu-
died in Section 3.1, the second part of Chapter 2 deals with the question
of extending Baire-1 functions from subsets of topological spaces. Last
but not least, the third part provides a general theory of Borel classes
in topological spaces.
The second part of the thesis applies the results of the �rst part in

theory of compact convex sets and Banach spaces. First we solve the
abstract Dirichlet problem for Baire-1 functions on compact convex sets,
then we investigate the possibility of transferring descriptive properties
of strongly a�ne functions from the set of extreme points.
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Resumé

V disertaci studujeme vztahy mezi deskriptivní teorií mnoºin a te-
orií kompaktních konvexních mnoºin. Teorii kompaktních konvexních
mnoºin lze pokládat za obecný rámec, ve kterém je moºné krom¥ Bana-
chových prostor· zkoumat i jejich podmnoºiny £i prostory m¥r. Deskrip-
tivní teorie mnoºin poskytuje metodu, jak m¥°it sloºitost uvaºovaných
objekt·. Vztahy mezi t¥mito dv¥ma matematickými disciplínami posky-
tují zajímavý vhled do obou z nich.
P°ipome¬me, ºe teorie Banachových prostor· je £áste£n¥ zahrnuta v

teorii kompaktních konvexních mnoºin pomocí následující úvahy. Je-li E
Banach·v prostor, je jeho duální jednotková koule BE∗ konvexní mno-
ºina, jeº je kompaktní ve weak* topologii. Dále, E je isometricky vno°en
do prostoru spojitých a�nních funkcí na BE∗. Jelikoº je BE∗ kompaktní
prostor, lze na n¥m uvaºovat borelovskou strukturu, tj. σ-algebru bore-
lovských mnoºin. Ty lze dále jemn¥ji rozt°ídit do borelovských t°íd, coº
umoº¬uje zkoumat borelovskou t°ídu daného objektu.
Diserta£ní práce je zam¥°ena na aplikace deskriptivní teorie mnoºin v

teorii kompaktních konvexních mnoºin. Po vybudování teorie borelov-
ských t°íd v obecných topologických prostorech jsou prezentovány vý-
sledky o jejich stabilit¥ vzhledem k perfektním zobrazením. Tato vlast-
nost je klí£ová pro pozd¥j²í aplikace ve druhé kapitole práce. Jelikoº
je druhá £ást práce mimo jiné v¥nována a�nním funkcím první t°ídy,
zabýváme se v Sekci 2.2. roz²i°ováním funkcí první t°ídy z podmnoºin
topologických prostor·. Záv¥r první kapitoly je pak v¥nován obecné te-
orii borelovských t°íd v topologických prostorech.
Druhá £ást práce aplikuje výsledky první v teorii kompaktních kon-

vexních mnoºin a v Banachových prostorech. Nejprve se v¥nujeme °e²ení
abstraktní Dirichletovy úlohy na kompaktních konvexních mnoºinách.
Druhá sekce Kapitoly 2 zkoumá p°ená²ení deskriptivních vlastností siln¥
a�nních funkcí z mnoºiny extremálních bod·.
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1. Introduction

A Banach space is a real normed linear space which is complete in the
metric induced by the norm. In particular, Rn or Cn is a Banach space
when equipped with the Euclidean norm. The sequence spaces `p (for
p ∈ [1,∞]), the space c0 of sequences converging to 0, Lebesgue function
spaces Lp([0, 1]) (for p ∈ [1,∞]) or the space C([0, 1]) of continuous
functions on [0, 1] are classical examples of in�nite dimensional Banach
spaces.
Banach spaces admit several structures including algebraical, geome-

trical and topological ones. One can view them as linear spaces, metric
spaces or topological spaces. It is also possible to study the interplay of
these points of view. There are several natural topologies on a Banach
space. The �rst one is the norm topology, induced by the metric gene-
rated by the norm. Another very important one is the weak topology,
which is the weakest topology having the same continuous linear functi-
onals as the norm topology. On a dual space there is another topology �
namely the topology of pointwise convergence, which is called the weak*
topology.
A compact space is a topological space K such that each cover of K by

open sets admits a �nite subcover. For example, the unit interval [0, 1]
is compact. More generally, a subset of Rn is compact if and only if it
is closed and bounded. A topological space K is Lindelöf if any open
cover of K admits a countable subcover. A metrizable topological space
is Lindelöf if and only if it is separable.
Compact spaces are closely related to Banach spaces. The �rst result

of this kind says that the closed unit ball BE of a Banach space E is
compact (in the norm topology) if and only if the space E has �nite
dimension. A deeper result is the Banach-Alaoglu theorem saying that
the unit ball BE∗ of the dual space X∗ is compact in the weak* topology
for any Banach space E. For a compact space K, let C(K) stand for the
Banach space of all continuous functions on K. Then we can embed
any Banach space E to the space C(BE∗) via the canonical embedding,
namely, for x ∈ E we de�ne x̂(x∗) = x∗(x), x∗ ∈ BE∗. The mapping x 7→
x̂ is then an isometric embedding of E into the space of all continuous
a�ne functions on BE∗.
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This example leads to the study of a more general framework, namely
to the theory of compact convex sets. Let X be a compact convex subset
of a locally convex space E and Ac(X) denote the space of all continuous
a�ne functions on X. If X = BE∗ for a Banach space E, X is a subset
of a locally convex space E∗ endowed with the weak* topology and E is
identi�ed with the space of all continuous a�ne functions vanishing at
0. Thus the study of spaces of a�ne continuous functions on compact
convex set can be regarded as a general framework for an investigation
of Banach spaces.
When dealing with a topological space K, we want to work with easily

de�nable sets � descriptive ones. A natural descriptive object is the σ-
algebra of all Borel subsets of K, i.e., the σ-algebra generated by the
family of open subsets of K. By their �ner distinguishing we can talk
about sets of Borel class α for a countable ordinal α. These classes in a
way describes complexity of the involved sets. One of their interesting
features is their stability with respect to perfect mappings. (Examples of
perfect mappings are continuous mappings between compact topological
spaces.)
The main idea of the thesis is an interplay between theory of compact

convex sets and descriptive properties of the involved a�ne functions,
in particular we focus on applications of perfect mappings in theory of
compact convex sets.

2. Summary of Chapter 2

We always consider our topological spaces to be Tychono�, i.e., com-
pletely regular. Also, for the sake of simplicity we consider vector spaces
to be real.

2.1. Summary of Section 2.1: Perfect images of absolute Sou-
slin and absolute Borel Tychono� spaces. Let us recall classical
results on Borel classes and functions in separable metrizable space due
to Kuratowski, Hausdor�, etc.
We start with several de�nitions. If X is a set and F is a family of

subsets in X, then F is a sublattice, if ∅, X ∈ F and F is closed with
respect to �nite unions and intersections. The family F is an algebra if
F is a sublattice that is closed with respect to complements. If F is a
family of sets in a set X, we write Fσ (respectively Fδ) for all countable
unions (respectively intersections) of sets from F . We write χA for the
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characteristic function of a set A and f |A for the restriction of a function
f on A. If f : X → Y is a mapping from X to a topological space Y ,
we say that f is F�measurable, if f−1(U) ∈ F for each open U ⊂ Y .
If F is a family of sets in a set X, we de�ne abstract Borel classes

generated by F as follows: Let Σ1(F) = F , Π1(F) = {X \F : F ∈ F},
and for α ∈ (1, ω1), let

Σα(F) =
(⋃
β<α

Πβ(F)
)
σ

and
Πα(F) =

(⋃
β<α

Σβ(F)
)
δ
.

The family Σα(F) is termed the sets of additive class α, the family
Πα(F) is called the sets of multiplicative class α. The sets in ∆α(F) =
Σα(F) ∩ Πα(F) are the sets of ambiguous class α.
Further we de�ne the inductive classes of mappings. If Φ is a family

of mappings from a set X to a topological space Y , inductively we
de�ne Baire classes generated by Φ as follows: Let Φ0 = Φ and for each
countable ordinal α ∈ (0, ω1), let Φα be the family of all pointwise limits
of sequences from

⋃
β<α Φβ.

It will be sometimes convenient to denote the starting family of the
inductive de�nition as Φ1. More precisely, we start from a family denoted
as Φ1 and then Φα consists of all pointwise limits of sequences from⋃

1≤β<α Φβ, α ∈ (1, ω1). The purpose of this convention is that we want
to start the generation of mappings between topological spaces from
�Baire�one� mappings.
Let F be an algebra of sets in a set X, Y be a separable metrizable

space and let Φ1 stand for the family of all Σ2(F)-measurable mappings
from X to Y . Then we get the following analogue of the Lebesgue-
Hausdor�-Banach characterization as follows:
A mapping f : X → Y is Σα+1(F)-measurable if and only if f ∈ Φα.
If F is a metrizable space and F is the algebra of sets which are

both Fσ and Gδ, then the resulting classes are the classical classes of
Borel sets (see [19, Section 11.B]). Also, the Lebesgue-Hausdor�-Banach
characterization is then a classical result.
If X is a Tychono� topological space, we write G(X) for the sublattice

of all open subsets of X. A subset A of X is called a zero set if A =
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f−1({0}) for a continuous real-valued function f on X. It is clear that
such a function f can be chosen with values in [0, 1]. A cozero set is
the complement of a zero set. It is easy to check that zero sets are
preserved by �nite unions and countable intersections. Hence cozero sets
are preserved by �nite intersections and countable unions. (Zero and
cozero sets are termed functionally closed and functionally open sets in
[6, p. 42]).
We recall that Borel sets are members of the σ�algebra generated by

the family of all open subset of X and Baire sets are members of the
σ�algebra generated by the family of all cozero sets in X. We recall
that a subset A of a topological space X is Fσ, if A can be written as a
countable union of closed sets. The complement of an Fσ set is called a
Gδ set.
The space X is called scattered if its each subset has an isolated point,

that is, for each A ⊂ X there exists x ∈ A and an open set U such that
A ∩ U = {x}. The space X is σ�scattered, if X can be written as a
countable union of scattered subspaces.
We consider the following families of subsets of X.
(a) The algebra Bas(X) generated by zero sets. Then

Bas(X) = {
n⋃
i=1

(Fi \Hi) : Fi, Hi are zero sets in X,n ∈ N}.

(b) The algebra Bos(X) generated by closed subsets of X. As above,

Bos(X) = {
n⋃
i=1

(Fi \Hi) : Fi, Hi are closed in X,n ∈ N}.

(c) The algebra Hs(X) of all H�sets (or resolvable sets). H�sets are
de�ned in [21, �12, II], where their basic properties are described
(see also [20, p. 218]). Let us recall some equivalent de�nitions. A
subset A of a topological space X is an H�set if for any nonempty
B ⊂ X there is a nonempty relatively open U ⊂ B such that
either U ⊂ A or U ∩ A = ∅. It is clear that H�sets form an
algebra containing all open sets. Further, A is an H�set in X if
and only if A is the union of a scattered family of sets of the form
F ∩ G with F closed and G open. (We recall that a family U
of subsets of a topological space is scattered if it is disjoint and
for each nonempty V ⊂ U there is some V ∈ V relatively open
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in
⋃
V . Thus it follows that a topological space X is scattered if

{{x} : x ∈ X} is a scattered family.)

For each algebra of sets listed in (a)�(c) we consider the clas-
ses of sets de�ned in Section 1.1.2. For α ∈ (1, ω1), the sets in
Σα(Bos(X)) or Σα(Bas(X)) will be called the sets of additive Bo-
rel or Baire class α, respectively. Similarly we label the sets in
Πα(Bos(X)) or Πα(Bas(X)) as the sets of multiplicative Borel or
Baire class α, respectively.

(d) If we start the Borel hierarchy from the sublattice G(X) of all open
subsets of X, for metrizable spaces we get the standard Borel
hierarchy as de�ned in [19, Section 11.B]. We write Σ0

α(G(X))
and Π0

α(G(X)) for the families obtained by this procedure. We
show below its relation to the families de�ned in (a)�(c). We just
mention that a set A belongs to Σ0

2(G(X)) if and only if A is of
type Fσ.

In general, Hs(X) may contain a non-Borel set, in fact Hs(X) may be
a strictly larger family than the system of all Borel sets in X. An easy
example is provided by a suitable scattered compact space X. Namely,
in this case any subset of X is an H�set, since {{x} : x ∈ X} is a
scattered family consisting of closed sets. If X = [0, ω1] with the order
topology and A ⊂ [0, ω1) is a stationary subset, so that [0, ω1) \ A is
also stationary (see [15, Lemma 7.6]), then A is a resolvable non-Borel
set (see [29, Lemma 1], [10, p. 296] or [12, Example 4.4]).
We can consider even more general descriptive classes of sets. Let NN

denote the space of all sequences of natural numbers. For σ ∈ NN and
n ∈ N, we write σ|n for the �nite sequence (σ(1), . . . , σ(n)). If X is a
set and F is a family of its subsets, we say that A ⊂ X is a result of
the Souslin operation applied to the sets F , if

A =
⋃
σ∈NN

∞⋂
n=1

Fσ|n,

where Fs ∈ F for each �nite sequence s of natural numbers. We write
S(F) for the family of sets A ⊂ X obtainable by this procedure.
For families Bas(X), Bos(X) and Hs(X) we consider sets obtainable

by the Souslin operation applied to these families.
The main result now can be stated as follows.
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Theorem 1. Let ϕ : X → Y be a continuous surjection of a compact
space X onto a compact space Y . Let F be any of the descriptive class
mentioned above and let B ⊂ Y . Then B ∈ F if and only if ϕ−1(B) ∈
F .

The basic ingredient of the proof is the following selection result.
We recall that a set-valued mapping F : X → Y is a usco mapping if

F has compact values and for any closed set H ⊂ Y the set
F−1(H) = {x ∈ X : F (x) ∩H 6= ∅}

is closed in X.

Lemma 1. Let X and Y be Hausdor� topological spaces and F be a
usco mapping of Y to X with nonempty values. Suppose further that
Hn, n ∈ N, are resolvable sets.
Then there is a set-valued mapping S of Y to X such that
(a) S(y) ⊂ F (y) is a nonempty compact subset of X for every y ∈ Y ,
(b) S−1(Hn) ∩ S−1(X \Hn) = ∅ for every n ∈ N, and
(c) S−1(Hn) is resolvable in Y for every n ∈ N.

For the algebra Bos we can formulate a more general result.

Lemma 2. Let Y be a set and (Y ) be an algebra of subsets of Y . Let
Hn ∈ Bos(X) for a topological space X, n ∈ N . Suppose further that
F : Y → X is a set-valued mapping with F (y) a nonempty compact set
for every y ∈ Y and such that F−1(H) ∈ (Y ) for every closed set H in
X.
Then there is an S : Y → X such that
(a) S(y) ⊂ F (y) is a nonempty compact subset of X for every y ∈ Y ,
(b) S−1(Hn) ∩ S−1(X \Hn) = ∅, and
(c) S−1(Hn) ∈ (Y ).

This theorem has couple of corollaries. Let us recall that a Tychono�
space X is termed to be of absolute class F , if X is of class F in any
Tychono� space it is embedded in.

Theorem 2. For a space X, the following assertions are equivalent.
(i) The space X is of absolute class F .
(ii) The space X is of class F in any compact space it is embedded in.
(iii) The space X is of class F in its �ech�Stone compacti�cation.
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Another consequence of Theorem 1 is the following result on pre-
servation of absolute classes under perfect mappings. We recall that a
mapping ϕ : X → Y is perfect if it is continuous, closed and has compact
�bers, i.e., ϕ−1(y) is compact for each y ∈ Y .

Theorem 3. Let ϕ : X → Y be a perfect mapping of a space X of
absolute class F onto a Tychono� space Y . Then Y is of absolute class
F .

We recall that X is scattered-K-analytic if X ∈ S(Hs(βX)) (here βX
stand for the �ech�Stone compacti�cation of X). A particular case of
the previous theorem is a proof of the following conjecture of Hansell
(see [10, Theorem 6.29]).

Theorem 4. A perfect image of a scattered-K-analytic space is a scatter-
ed-K-analytic space.

2.2. Summary of Section 2.1: Extending Baire one functions
on topological spaces. The extension of mappings in a way started
by the Tietze theorem stating that any continuous function on a closed
subset of a normal space can be extended to a continuous function on
the whole space. For Baire-1 mappings there is a classical result that any
Baire-1 function on a Gδ subset of a metric space can be extended to a
Baire-1 function de�ned on the whole space. The aim of this paper is an
investigation of possibility of extending Baire-1 functions from subsets
of topological spaces.
The �rst result is the following.

Theorem 5. Let X be a space, Y ⊂ X and
(a) Y is a cozero subset of X, or
(b) Y is its Lindelöf Gδ�subset.

Then for any Baire-1 function f on Y there is a Baire-1 function g on
X such that f = g on Y ,

inf f(Y ) = inf g(X) and sup f(Y ) = sup g(X) .

To prove the main result we need the following key lemma on separa-
ting disjoint Lindelöf sets.

Lemma 3. Let A and B be a couple of disjoint Lindelöf subsets of a
space X.
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If there is no Cozδ set G satisfying A ⊂ G ⊂ X \B, then there exists
a nonempty closed set H ⊂ X such that H ∩ A = H ∩B = H.

With the help of this key lemma one can proves the main result on
extending Baire-1 functions. (We recall that a space X is hereditarily
Baire if any closed subset of X is a Baire space.)

Theorem 6. Let Y be a Lindelöf hereditarily Baire subset of a space X
and f be a Baire-1 function on Y . Then there exists a Baire-1 function
g on X such that f = g on Y ,

inf f(Y ) = inf g(X) and sup f(Y ) = sup g(X) .

Let (F ∨ G)δ stand for countable intersections of sets of the form
F ∪ G, where F is closed and G open. Since any (F ∨ G)δ�subset of a
hereditarily Baire space is also hereditarily Baire, we get the following
corollary.

Theorem 7. Let Y be a Lindelöf (F ∨ G)δ�subset of a hereditarily
Baire space X. Then any Baire-1 function f on Y can be extended to
a Baire-1 function g on X so that f = g on Y ,

inf f(Y ) = inf g(X) and sup f(Y ) = sup g(X) .

Once we can extend Baire-1 functions, the natural question is whe-
ther there is a possibility of extending Baire-1 mappings with values in
metrizable spaces. However, we cannot in general hope to �nd mappings
which are pointwise limits of continuous functions, but at least we are
able to extend mappings of the �rst Borel class, i.e., mappings that are
Σ2(Bos(X))-measurable.

Theorem 8. Let Y be a Lindelöf subset of a space X. Assume that
(a) Y is hereditarily Baire, or
(b) every Cozδ�set in X is Lindelöf and Y is an H�set, or
(c) Y is Gδ�set in X.

Then for any mapping f : Y → P of the �rst Borel class to a Polish
space P there exists a mapping g : X → P of the �rst Borel class such
that f = g on Y and g(X) ⊂ f(Y ).

The last main result is important for Section 3.1 and it reads as follows.
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Theorem 9. Let X be a compact set in a locally convex space such that
extX is Lindelöf. Let f be a Baire-1 function on extX. Then there
exists a Baire-1 function g on X such that f = g on X,

inf f(extX) = inf g(X) and sup f(extX) = sup g(X) .

2.3. Summary of Section 2.1: Borel sets and functions in to-
pological spaces. The aim of this paper is to present an exposition
of Borel classes in topological space and investigate their basic proper-
ties. First result was already mentioned in Section 2.1. It connects the
measurability of mappings with the possibility of their pointwise appro-
ximation, i.e., the classical Lebesgue�Hausdor��Banach theorem (see
[19, Theorem 24.3]).

Theorem 10. Let F be an algebra of sets in a set X and let Y be
a separable metrizable space. Let Φ1 stand for the family of all Σ2(F)�
measurable mappings from X to Y and, for α ∈ (1, ω1), let Φα be de�ned
from Φ1 as in Section 2.1.
Then, for each α ∈ (0, ω1) and f : X → Y , the following assertions

are equivalent:
(i) f ∈ Φα,
(ii) f is Σα+1(F)�measurable.

The basic properties of Borel sets in topological spaces are summarized
in the following result.

Theorem 11. Let X be a space. Then the following assertions hold:
(a) Σα(Bas(X)) ⊂ Σα(Bos(X)) ⊂ Σα(Hs(X)), α ∈ (0, ω1),
(b)

⋃
α<ω1

Σα(Bas(X)) is the σ�algebra of all Baire sets in X and the
family

⋃
α<ω1

Σα(Bos(X)) is the σ�algebra of all Borel sets in X,
(c) if A is a subset of a normal space, then A ∈ ∆2(Bas(X)) if and

only if A is both Fσ and Gδ,
(d) if X is metrizable, then
(d1) Σα(Bas(X)) = Σα(Bos(X)), α ∈ (0, ω1),
(d2) Σα(Hs(X)) = Σα(Bos(X)) = Σ0

α(G(X)), α ∈ (1, ω1),
(d3) if X is completely metrizable, then Hs(X) = ∆2(Bos(X)).

The results of Section 2.1 are then used in a partial answer to a ques-
tion by Mauldin (see [26]). First we recall the notion of order.
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If F is a family of sets in a set X, the order of F (denoted as ord(F))
is the least α ∈ (0, ω1) such that Σα(F) = Σα+1(F) if such α exists,
otherwise the order is ω1 (see [26, p. 433]).
If X is a topological space, we call ord(Bas(X)), ord(Bos(X)) and

ord(Hs(X)) the Baire, Borel and resolvable order of X, respectively.
If X is a compact space, it is well known that ord(Bas(X)) is either ω1

or smaller or equal than 2, depending on the fact whether X is scattered
or not (see [5], [28, Theorem 3.4], [30, Theorem 6.1.2] or Theorem 12 be-
low). The question of the possible values of the Borel order of a compact
space X is asked in [26, Question, p. 440] and [27, Problem, p. 295]. The
following theorem solves one part of this problem.

Theorem 12. For a space X the following assertions hold.
(a) If X is a K�analytic σ�scattered space, then

ord(Bas(X)) ≤ 2 and ord(Hs(X)) ≤ 2.

(b) If X contains a compact perfect set, then
ord(Bas(X)) = ord(Bos(X)) = ord(Hs(X)) = ω1.

However, the general question is still open.

Question. Let X be a compact scattered space. Is it true that
ord(Bos(X)) ≤ 2?

The last part of the paper connects Borel measurable mappings with
pointwise limits of sequences of continuous functions. First we de�ne
classes created by means of pointwise limits of Borel measurable map-
pings.
We consider the following classes of mappings between topological

spaces X and Y .
(a) Let Baf1(X, Y ) be the family of all Σ2(Bas(X))�measurable map-

pings from X to Y and for α ∈ (1, ω1), let
Bafα(X, Y ) = (Baf1(X, Y ))α.

We call the elements of
⋃
α<ω1

Bafα(X, Y ) the Baire measurable
mappings.

(b) Let Bof1(X, Y ) be the family of all Σ2(Bos(X))�measurable map-
pings from X to Y and for α ∈ (1, ω1), as above we set

Bofα(X, Y ) = (Bof1(X, Y ))α.
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We call the elements of
⋃
α<ω1

Bofα(X, Y ) the Borel measurable
mappings.

(c) Let Hf1(X, Y ) be the family of all Σ2(Hs(X))�measurable map-
pings from X to Y and for α ∈ (1, ω1), as above we set

Hfα(X, Y ) = (Hf1(X, Y ))α.

We call the elements of
⋃
α<ω1

Hfα(X, Y ) the resolvably measurable
mappings.

The following theorem justi�es the term �measurability� in the de�ni-
tion above.

Theorem 13. Let f be a mapping from a Tychono� space X to a sepa-
rable metrizable space Y and α ∈ (0, ω1). Then the following assertions
hold:
(a) f ∈ Bafα(X, Y ) if and only if f is Σα+1(Bas(X))�measurable.
(b) f ∈ Bofα(X, Y ) if and only if f is Σα+1(Bos(X))�measurable.
(c) f ∈ Hfα(X, Y ) if and only if f is Σα+1(Hs(X))�measurable.

Let now recall the classical Baire classes of mappings between topolo-
gical spaces.
Let α ∈ (0, ω1). A mapping f : X → Y between topological spaces X

and Y is said to be of Baire class α if f ∈ (C(X, Y ))α, where C(X, Y )
denotes the set of all continuous mappings from X to Y . We write
Cα(X, Y ) for the family of all mappings of Baire class α.
The following theorem is a variant of the classical characterization of

mappings of Baire class α via their measurability (see e.g. [19, Theorem
24.3] or [8, Theorem 3]).

Theorem 14. Let X be a compact space, Y be an arcwise connected
locally arcwise connected metric space Y and f : X → Y be a function
such that f−1(U) is a Baire subset of X for every open U ⊂ Y . Let
α ∈ (0, ω1). Then the following assertions are equivalent:

(i) f ∈ Bafα(X, Y ),
(ii) f ∈ Bofα(X, Y ),
(iii) f ∈ Hfα(X, Y ),
(iv) f ∈ Cα(X, Y ).

The most di�cult part of the proof of Theorem 14 is to show that
C1(X, Y ) equals the space of Σ2(Bas(X))�measurable mappings. There
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is a long series of papers devoted to the question under what conditions
a function f : X → Y is of Baire class 1 if and only if f−1(U) is Fσ for
each U ⊂ Y open. This question has an a�rmative answer in any of the
following situations:
• X is an interval in R and Y = R (see [2]),
• X is metric, Y = R (see [23]),
• X is metric, Y = [0, 1]n, n ∈ N, or Y = [0, 1]N (see [21, �27, IX]),
• X is metric, Y is a separable convex subset of a Banach space (see
[31, Lemma 3]),
• X is a complete metric space and Y is a Banach space (see [33,
Theorem 4]),
• X is a normal topological space, Y = R (see [9] or [25, Exercise
3.A.1]),

If f : X → Y is σ�discrete (see [9, �3], [14, Section 2.2] or [34, p.
144] for the de�nition and basic properties), then f is of Baire class 1 if
and only if f−1(U) is Fσ for each U ⊂ Y open in any of the following
situation:
• X is a perfectly normal paracompact space, Y is a Banach space
(see [13, Corollary 7]),
• X is collectionwise normal and Y is a closed convex subset of a
Banach space (see [9]),
• X is metric, Y is a complete connected and locally connected
metric space (see [8, Theorem 2]),
• X is normal, Y is arcwise connected and locally arcwise connected
and f is strongly σ-discrete (see [34, Theorem 3.7]).

3. Summary of Chapter 3

3.1. Summary of Section 3.1.: A solution of the abstract Di-
richlet problem for Baire one functions. The �rst section of this
chapter deals with the abstract Dirichlet problem for Baire-1 functions
on compact convex sets. If X is a compact convex set in a locally convex
space, the classical Krein-Milman theorem asserts that X = conv extX,
i.e.,X equals the closed convex hull of the set extX of all extreme points
of X. This theorem can be reformulated in the following way. For any
point x ∈ X there exists a measure µ ∈M1(X) such that x =

∫
X id dµ

(here M1(X) stands for the Radon probability measures on X and
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∫
X id dµ is the Pettis integral from the identity mapping.) The equality
x =

∫
X id dµ can be reformulated as follows: for any h ∈ Ac(X) it holds

h(x) =
∫
X h dµ. We call such a measure µ a representing measure for x.

The question of �nding a representing measure that is more or less
carried by the set extX leads to the de�nition of the Choquet order.
We say that µ, ν ∈ M1(X) satisfy µ � ν if µ(k) ≤ ν(k) for any
convex continuous function on X. Then for any x ∈ X there exists a
�-maximal measure µ representing x that is carried by any Baire set
containing extX (this is the content of the Choquet�Bishop�de-Leeuw
theorem, see [24, Section 3.8]). If the maximal representing measures are
uniquely determined, X is said to be a simplex. In a �nite dimensional
space, this notion leads to the classical de�nition of a simplex. If X is a
simplex, let δx denotes the maximal measure representing x ∈ X.
The abstract Dirichlet problem is a question whether it is possible to

extend a given function on extX to an a�ne function on X.
Bauer showed in [3] thatX is a simplex with extX closed if and only if

any bounded continuous function on extX can be extended to a function
h ∈ Ac(X). The content of Section 3.1. is a proof of a conjecture due
to Jellett (see [16]) which was further elaborated by Kalenda (see [18]).
The main result is the following.

Theorem 15. Let X be a compact convex set. Then the following as-
sertion are equivalent:

(i) X is a simplex and extX is a Lindelöf H�set,
(ii) X is a simplex and for any closed Gδ set F ⊂ X the function

x 7→ δx(F ), x ∈ X, is Baire�one,
(iii) X is a simplex and the function x 7→ δx(f), x ∈ X, is Baire-1 for

every bounded Baire-1 function f on X,
(iv) for every bounded Baire-1 function f on X there exists an a�ne

Baire-1 function h on X such that f = h on extX,
(v) for every bounded Baire-1 function f on extX there exists an

a�ne Baire-1 function h on X such that f = h on extX.

Among the main ingredients of the proof belong Theorem 9 and results
of Section 2.1.

3.2. Summary of Section 3.2: Descriptive properties of ele-
ments of biduals of Banach spaces. The second application of the
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results of Section 2.1 deals with the descriptive properties of a�ne functi-
ons on compact convex sets. We formulate our results in the language of
Banach spaces and their duals. We recall that a function on a compact
convex set X is strongly a�ne if f(x) = µ(f) for every x ∈ X and every
measure µ ∈M1(X) representing x.
Now we can state our generalization of Saint Raymond's result conta-

ined in [32, Corollaire 8].

Theorem 16. Let E be a Banach space and f ∈ E∗∗ be strongly a�ne.
Then,
• for α ∈ [1, ω1), f |extBE∗ ∈ Hfα(extBE∗) if and only if f ∈

Hfα(BE∗),
• for α ∈ [1, ω1), f |extBE∗ ∈ Bofα(extBE∗) if and only if f ∈

Bofα(BE∗),
• for α ∈ [0, ω1), f |extBE∗ ∈ Cα(extBE∗) if and only if f ∈ Cα(BE∗).

Further we focus on the case when the set of extreme points is Lindelöf.

Theorem 17. Let E be a Banach space such that extBE∗ is a Lin-
delöf set. Let f ∈ E∗∗ be a strongly a�ne element satisfying f |extBE∗ ∈
Cα(extBE∗) for some α ∈ [0, ω1). Then

f ∈

{
Cα+1(BE∗), α ∈ [0, ω0),

Cα(BE∗), α ∈ [ω0, ω1).

By assuming a stronger assumption on extBE∗ we may ensure the
preservation of all classes, including the �nite ones.

Theorem 18. Let E be a Banach space such that extBE∗ is a resol-
vable Lindelöf set. Let f ∈ E∗∗ be a strongly a�ne element satisfying
f |extBE∗ ∈ Cα(extBE∗) for some α ∈ [1, ω1). Then f ∈ Cα(BE∗).

For a particular class of Banach spaces, namely the L1-preduals, one
can obtain some information on the a�ne class of a function from its
descriptive class (we recall that a Banach space E is an L1-predual if
E∗ is isometric to some space L1(µ); see [17, p. 59], [22, Chapter 7]
or [11, Section II.5]). A�ne classes Aα(X), α < ω1, of functions on a
compact convex set X are created inductively from A0(X) = Ac(X)
(see [4] or [24, De�nition 5.37]). We also remark that a pointwise con-
vergent sequence of a�ne functions on X is uniformly bounded which
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easily follows from the uniform boundedness principle (see e.g. [24,
Lemma 5.36]), and thus any function in

⋃
α<ω1

Aα(X) is strongly af-
�ne. If X = BE∗ is the dual unit ball of a Banach space E, the a�ne
classes are termed intrinsic Baire classes of E in [1, p. 1047] whereas
strongly a�ne Baire functions on X creates hierarchy of Baire classes
of E. Theorem 19 relates these classes for real L1-preduals.
We recall that, given a compact convex set X in a real locally convex

space, the Banach space Ac(X) is an L1-predual if and only if X is a
simplex (see [7, Theorem 3.2 and Proposition 3.23]).

Theorem 19. Let E be a L1-predual and f ∈ E∗∗ be a strongly a�ne
function such that f ∈ Cα(BE∗) for some α ∈ [2, ω1). Then

f ∈

{
Aα+1(BE∗), α ∈ [2, ω0),

Aα(BE∗), α ∈ [ω0, ω1).

If, moreover, extBE∗ is a Lindelöf resolvable set, then f ∈ Aα(BE∗).
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