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a) Recent state of problems under investigation

and the related literature

The present dissertation is identical with the monographic chapter B[2] in the
handbook [CDF3]. Unlike variational methods, the topological methods for differ-
ential equations and inclusions with given constraints (e.g. boundary conditions)
are based on the fixed point theorems. The fixed point theory is nowadays an
autonomous advanced discipline which roughly consists of two main parts: (i)
metric fixed point theory (Banach–type theorems) and (ii) topological fixed point
theory (Schauder–type theorems). The recent state of fixed point theory is re-
flected by e.g. the handbooks [KS] and [BFGJ]. The handbook [BFGJ] includes
author’s further monographic chapter B[3] titled “Applicable fixed point princi-
ples”. Further author’s papers related to the development of fixed point theory
and its applications are: C1[12], C1[20], C1[23], C1[33], C1[37], C1[40], C1[41],
C1[43], C1[49], C1[52], C1[54], C1[56], C1[58], C1[60], C1[62]. In the frame of
fractal theory, besides the standard application of the Banach theorem, we also
extended the fixed point theory in hyperspaces in: [BFGJ, Chapter 6], C1[14],
C1[29], C1[32], C1[34], C1[49]. There are four journals exclusively devoted to the
fixed point theory and its applications: Fixed Point Theory and Applications,
Journal of Fixed Point Theory and Applications, Fixed Point Theory and JP
Journal of Fixed Point Theory and Applications.

Continuation principles for the solvability of various types of problems for
differential equations and inclusions are based on the homotopical properties of
topological invariants like degrees, fixed point indices, Lefschetz and Nielsen num-
bers. Their survey can be partly found e.g. in the monographs of M. A. Kras-
nosel’skii and P. P. Zabreiko [KZ], R. E. Gaines and J. Mawhin [GM], [Ma],
S. Fuč́ık [Fu], P. Fitzpatrick et al. [FZ], K. Deimling [De], M. I. Kamenskii et al.
[KOZ], J. Andres and L. Górniewicz A[1], etc. Some contributions in the Hand-
book of Differential Equations (Ordinary Differential Equations) [CDF1], [CDF2],
[CDF3], [BF] are relied on these principles, too. Further continuation principles
were formulated in our papers C1[5], C1[7], C1[8], C1[13], C1[21], C1[36], C1[41],
C1[56], C1[57], C1[58], C1[74]. The most closely related journal is Topological
Methods in Nonlinear Analysis.

Our continuation principles can also be associated with multivalued maps.
That is why they are applicable for differential inclusions. There is a big progress
in multivalued analysis, especially in the last two decades. This can be seen e.g.
from the Handbook of Multivalued Analysis in two volumes [HP1] and [HP2].
The journal Set–Valued Analysis is exclusively devoted to multivalued problems.

Our existence results concern boundary value problems on compact as well
as noncompact (e.g. infinite) intervals, differential equations and inclusions in
finite–dimensional (Euclidean) as well as infinite–dimensional (Banach) spaces.
We are also interested in multiplicity results (by means of the Nielsen number,
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estimating from below the number of fixed points and the associated solutions)
and the topological structure of solution sets. Let us note that, for multiplicity
results, the additivity of degrees is usually applied. For instance, if the zero
degree in a given domain becomes nontrivial in its subdomain, then the sign of
the degree must be opposite, on the remaining set, which implies the existence
of at least two solutions. On the other hand, the nontraditional application of
the Nielsen number is rather difficult, but effective. The rare results of the other
authors have been collected e.g. in [Fe], [Br], C1[26]. Our results concerning
the application of the Nielsen theory can be found in C1[19], C1[21], C1[23],
C1[26], C1[37], C1[48], C1[52], C1[55], C1[56], C1[60], C2[7], C2[9]. Unlike in the
results of R. F. Brown and M. Fečkan (cf. [Br], [Fe]), where the parameters had
to be implemented to simplify the calculations, our results apply also without
any parameter. Moreover, since we have to our disposal the multivalued Nielsen
theory, our techniques also apply to differential inclusions.

The investigation of the topological structure of solution sets mostly concerns
the initial value problems. For boundary value problems, the related results are
rather rare. In the past, the Hukuhara–Kneser type results (i.e. continua of solu-
tions) were mainly achieved. Recently, the Rδ-structure of solutions (i.e. special
continua, more general than convex compact sets) are appreciated. The related
results of the other authors are partly described in the monograph [DMNZ]. Our
further results were published in papers: C1[1], C1[43], C1[50], C1[54], C1[58]. In
the monograph A[1], the whole chapters III-2 and III-3 are devoted to this type
of problems.

The multiplicity results, in the frame of newly extended Nielsen theory, repre-
sent probably our most original contribution in this field. Further rather original
results are those concerning asymptotic boundary value problems, because they
are not treated sequentially.

Because of the pages limit, we study only differential systems of the first
order. Furthermore, the insufficient attention is also paid to the verification
of the transversality condition, guaranteeing the fixed point free boundary of
given domains, which are naturally required in our methods. This requirement
can be satisfied e.g. by means of bounding (Liapunov–like) functions which was
systematically elaborated in our papers: C1[4], C1[7], C1[8], C1[9], C1[13], C1[39],
C1[47], C2[2], C2[5]. In the papers C1[1], C1[4], C1[5], C1[8], C1[9], differential
systems of the second order were examined.

In the meantime, many results in the presented work B[2] have been naturally
improved or extended (e.g. by means of the effectively expressed transversality
condition just mentioned, in C1[7], C1[13], C1[36], C1[47]). As an illustrative
example, we can mention in these lines the stimulating Theorem 1.1 in Introduc-
tion of B[2]. More concretely, unlike the standard Sharkovskii cycle coexistence
theorem which cannot be applied to differential equations, Theorem 1.1 repre-
sents a version of the celebrated Sharkovskii theorem for differential equations
without uniqueness. For this goal, we published a series of papers C1[25], C1[26],
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C1[31], C1[35], C1[39], C1[42], C2[4], D[3], D[5] which lead to formulating Theo-
rem 1.1 in B[2]. Nevertheless, the authors of [OO] have rather surprisingly shown,
by means of an upper and lower solutions technique, that the mentioned The-
orem 1.1 does not at all depend of the new (Sharkovskii’s) ordering of positive
integers. The explanation and generalization of these results was published in
our papers C1[6], C1[16]. Further extensions of the Sharkovskii theorem were
formulated by ourselves in C1[10], C1[11], C1[15], C1[22], C2[1].

The above results can serve the stimulating arguments for the application of
multivalued analysis and, in particular, the investigation of differential inclusions.

There is also another motivation for the investigation of multivalued ODEs,
i.e. differential inclusions, because of a strict connection with

(i) optimal control problems for ODEs,

(ii) Filippov solutions of discontinuous ODEs,

(iii) implicit ODEs,

etc.
ad (i): Consider a control problem for

ẋ = f(t, x, u), u ∈ U, (1)

where f : [0, τ ] × R
n × R

n → R
n and u ∈ U are control parameters such that

u(t) ∈ R
n, for all t ∈ [0, τ ]. In order to solve a control problem for (1), we can

define a multivalued map F (t, x) := {f(t, x, u)}u∈U . The solutions of (1) are
those of

ẋ ∈ F (t, x), (2)

and the same is true for a given control problem.
ad (ii): If function f is discontinuous in x, then Carathéodory theory can not

be applied for solving e.g. the Cauchy (initial value) problems

{
ẋ = f(t, x),

x(0) = x0,
(3)

where f : [0, τ ] × R
n → R

n.
Making however the Filippov regularization of f , namely

F (t, x) :=
⋂

δ>0

⋂

r⊂[0,τ ]×R
n

µ(r)=0

convf(Oδ((t, x) \ r)), (4)

where µ(r) denotes the Lebesque measure of the set r ⊂ R
n and

Oδ(y) := {z ∈ [0, τ ] × R
n | |y − z| < δ},
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multivalued F is well-known to be again upper Carathéodory (shortly u-Cara-
théodory) with nonempty, convex and compact values, provided only f is mea-
surable and satisfies |f(t, x)| ≤ α + β|x|, for all (t, x) ∈ [0, τ ] × R

n, with some
nonnegative constants α, β. Thus, by a Filippov solution of ẋ = f(t, x), it is
so understood a Carathéodory solution of (2), where F is defined in (4). As an
example from physics, dry friction problems can be solved in this way.

ad (iii): Let us consider the implicit differential equation

ẋ = f(t, x, ẋ), (5)

where f : [0, τ ]×R
n×R

n → R
n is a compact (continuous) map and the solutions

are understood in the sense of Carathéodory. We can associate with (5) the
following two differential inclusions:

ẋ ∈ F1(t, x) (6)

and
ẋ ∈ F2(t, x), (7)

where F1(t, x) := Fix(f(t, x, · )), i.e. the fixed point set of f(t, x, · ) w.r.t. the last
variable, and F2 ⊂ F1 is a (multivalued) lower semicontinuous selection of F1.
The sufficient condition for the existence of such a selection F2 reads (see e.g.
[AG, Chapter III.11, pp. 558–559]):

dim Fix(f(t, x, · )) = 0, for all (t, x) ∈ [0, τ ] × R
n, (8)

where dim denotes the topological (covering) dimension.
Denoting by S(f), S(F1), S(F2) the sets of all solutions of initial value prob-

lems to (5), (6), (7), respectively, one can prove (see [AG, p. 560] that, under (8),
S(f) = S(F1) ⊂ S(F2) 6= ∅.

Although there are several monographs devoted to multivalued ODEs (see
e.g. [AG], [AC], [KOZ], [De], [FG], [HP2], [Ki], [MM], [Sm], [To]), topological
principles were presented mainly for single-valued ODEs (besides [AG], [De],
[KOZ] and [FG] for differential inclusions, see e.g. [Fu], [FZ], [GM], [KZ], [KW],
[Ma]). Hence, we consider without special distinguishing differential equations
as well as inclusions; both in Euclidean and Banach spaces. All solutions of
problems under our consideration (even in Banach spaces) will be understood at
least in the sense of Carathéodory. Thus, in view of the indicated relationship
with problems (i)–(iii), many obtained results can be also employed for solving
optimal control problems, problems for systems with variable structure, implicit
boundary value problems, etc.

The reader exclusively interested in single-valued ODEs can simply read “con-
tinuous”, instead of “upper semicontinuous” or “lower semicontinuous”, and re-
place the inclusion symbol ∈ by the equality =, in the given differential inclusions.
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b) Main aims

The main aims of our dissertation are the following:

1. To formulate sufficiently general continuation principles based on the cor-
rectly defined indices of fixed points (resp. topological degrees) and to de-
velop the methods for the solvability of a large class of boundary value
problems on compact as well as noncompact intervals, for differential equa-
tions and inclusions.

2. To formulate general continuation principle based on the correctly defined
Nielsen number and to develop the method for obtaining the multiplicity
results concerning especially periodic solutions of differential equations and
inclusions.

3. On the basis of methods from the point 1., to establish effective criteria of
solvability of a large class of boundary value problems on compact as well
as noncompact intervals, for differential equations and inclusions.

4. On the basis of a method from the point 2., to establish effective criteria for
a lower estimate of the number of especially periodic solutions to differential
equations and inclusions.
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c) Applied methods

All the applied methods can be characterized as topological. In the larger context,
problems under investigation belong to nonlinear analysis.

Our methods applied to nonlinear boundary value problems employ Schau-
der’s idea of linearization (parametrization) and subsequent transformation of a
given problem to an existence or multiplicity fixed point problem. Fixed points of
the associated Hammerstein operators represent solutions of given problems, or
— in case of Poincaré translation operators along the trajectories of differential
systems — determine solutions.

Various versions of the Lefschetz fixed point theorem, which is a far–reaching
generalization of the well–known Schauder fixed point theorem, is used rather as
a normalization property for a very general fixed point index or Nielsen number.
The fixed point index can be understood as a relative degree which can be applied
(unlike the absolute degree) in nonnormable (e.g. Fréchet) spaces.

As it was already pointed out, our methods can be also applied to multi-
valued operators which can be technically convenient. On the other hand, one
should then know the topological structure of solution sets of the fully or partly
(Schauder–like) linearized problems.

Besides the existence and multiplicity results, our methods allow us to detect
the localization of solutions, i.e. we can look for solutions in given sets. Since we
use the degree arguments, some solutions can escape from these sets or further
solutions can exist outside these sets.

Homotopical properties of all the applied topological invariants guarantee the
validity of obtained results, under slight homotopical deformations. In other
words, the obtained results are in this sense stable under homotopical deforma-
tions.
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d) Sample of dissertation results

In the entire text, all spaces are metric and by a (multivalued) map ϕ : X ⊸ Y ,
i.e. ϕ : X → 2Y \ {∅}, we mean the one with nonempty, closed values.

The existence results (in Section 5) and the multiplicity results (in Section 6)
for differential equations and inclusions are based on the application of topological
invariants (Lefschetz number, Nielsen number, fixed point index, degree theory,
etc.) developed for multivalued maps in mostly Fréchet spaces (see e.g. our
monograph [AG]). It will be, therefore, convenient to recall at least the basic
related notions.

A Fréchet space is a complete, metrizable, locally convex space. Its topol-
ogy can be generated by a family of seminorms. If it is normable, then it becomes
Banach.

By AR (or ANR) we denote, as usual, the class of absolute retracts (or absolute
neighbourhood retracts), namely X is an AR (or ANR) if each embedding h :
X → Y , i.e. h : X → h(X) is a homomorphism, into a metrizable space Y ,
such that h(X) ⊂ Y is closed, is a retract (or a neighbourhood retract of Y ).
It is well-known that every ANR is a retract of some open subset of a normed
space and that every retract of an open subset of a convex set in a Fréchet space
is an ANR. Furthermore, every AR is contractible, i.e. homotopically equivalent
to a one point space, and every ANR X is locally contractible, namely locally
contractible in each of its points x ∈ X which means that, for every ε > 0, there
exists δ > 0 (δ < ε) such that the ball B(x, δ) is contractible in B(x, ε). If there
exists a decreasing sequence {Xn} of compact, contractible sets Xn such that
X = ∩{Xn | n = 1, 2, . . .}, then X is called an Rδ-set. Let us note that any Rδ-
set is acyclic w.r.t. any continuous theory of homology (e.g. the Čech homology),
i.e. homologically equivalent to a one point space, and so any Rδ-set is nonempty,
compact and connected. The following hierarchies hold for metric spaces:

contractible ⊂ acyclic
∪

convex ⊂ AR ⊂ ANR,

compact, convex ⊂ compact AR ⊂ compact, contractible ⊂ Rδ ⊂ compact, acyclic,
and all the above inclusions are proper.

A map ϕ : X ⊸ Y is said to be upper semicontinuous (u.s.c.) if, for every
open U ⊂ Y , the set {x ∈ X | ϕ(x) ⊂ U} is open in X. It is said to be lower
semicontinuous (l.s.c.) if, for every open U ⊂ Y , the set {x ∈ X | ϕ(x) ∩ U 6=
∅} is open in X. If it is both u.s.c. and l.s.c., then it is called continuous.
A compact-valued map ϕ : X ⊸ Y , or equivalently ϕ : X → K(Y ) := {K ⊂
Y | K is compact}, is continuous if and only if it is Hausdorff-continuous, i.e.
continuous w.r.t. the metric d in X and the Hausdorff-metric dH in B(Y ) :=
{D ⊂ Y | D is nonempty and bounded}, where dH(A,B) := inf{ε > 0 | A ⊂
Oε(B) and B ⊂ Oε(A)} and Oε(D) := {x ∈ X | ∃y ∈ D : d(x, y) < ε}. Observe
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that every single-valued u.s.c. or l.s.c. map is continuous in the usual sense.
A u.s.c. map with Rδ-(acyclic) values will be called an Rδ-(acyclic) map. Rδ-

maps ϕ : X ⊸ Y can be identified here with J-maps, written ϕ ∈ J(X,Y ). A
typical example of J-maps are the Hammerstein operators representing bound-
ary value problems for ordinary differential inclusions. A map which is a finite
composition of compact-valued acyclic maps is called admissible (see e.g. [AG]).

The class of admissible maps contains u.s.c. maps with convex and compact
values, u.s.c. maps with contractible and compact values, Rδ-maps, acyclic maps
with compact values and their compositions. Moreover, the class of admissible
maps is, unlike the mentioned subclasses, closed under composition, i.e. compo-
sition of admissible maps remains admissible. A typical example of admissible
maps are Poincaré’s translation operators along the trajectories of systems of
ordinary differential inclusions. Compact and condensing admissible maps are,
therefore, extremely important in the whole work.

For the sake of simplicity, we shall present here only the results for differential
equations and inclusions in finite–dimensional (Euclidean) spaces.

As a sample of results having the character of a method, let us introduce
the following theorem (denoted in our dissertation as Corollary 4.1). Those who
are not familiar with multivalued analysis can simply read u-Carathéodory as
Carathéodory, i.e. consider particular single-valued case.

Theorem 1 Consider the boundary value problem

{
ẋ(t) ∈ F (t, x(t)), for a.a. t ∈ J,

x ∈ S,
(9)

where J is a given real interval, F : J × R
n

⊸ R
n is a u-Carathéodory map and

S is a subset of ACloc(J, Rn).
Let G : J × R

n × R
n

⊸ R
n be a u-Carathéodory map such that

G(t, c, c) ⊂ F (t, c), for all (t, c) ∈ J × R
n.

Assume that

(i) there exists a retract Q (e.g. a convex closed subset or its homeomorphic
image) of C(J, Rn) such that the associated problem

{
ẋ(t) ∈ G(t, x(t), q(t)), for a.a. t ∈ J,

x ∈ S ∩ Q
(10)

has an Rδ-set T (q) (e.g. convex and compact or a singleton) of solutions,
for each q ∈ Q,
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(ii) there exists a locally integrable function α : J → R such that

|G(t, x(t), q(t))| ≤ α(t), a.e. in J ,

for any (q, x) ∈ ΓT , where ΓT denotes the graph of the solution operator
T : Q ⊸ C(J, Rn).

(iii) T (Q) is bounded in C(J, Rn) and T (Q) ⊂ S.

Then problem (9) has a solution x( . ) such that x(t) ∈ Q, for all t ∈ J .

If, in particular, J = [a, b] (i.e. compact), then we can give the following
theorem (denoted in our dissertation as Corollary 4.3).

Theorem 2 Consider the boundary value problem (9), where J = [a, b] is this
time a compact interval, F : J × R

n
⊸ R

n is a u-Carathéodory map and S ⊂
AC(J, Rn).

Let G : J × R
n × R

n × [0, 1] ⊸ R
n be a u-Carathéodory map such that

G(t, c, c, 1) ⊂ F (t, c), for all (t, c) ∈ J × R
n. Assume that

(i) there exist a (bounded) retract Q (e.g. a convex closed subset of its homeo-
morphic image) of C(J, Rn) such that its interior Q\∂Q is nonempty (open)
and a closed bounded subset S1 of S such that the associated problem

{
ẋ(t) ∈ G(t, x(t), q(t), λ), for a.a. t ∈ J,

x ∈ S1

(11)

is solvable with an Rδ-set T (q) (e.g. convex and compact or a singleton) of
solutions, for each (q, λ) ∈ Q × [0, 1], and conditions

(ii) there exists a locally integrable function α : J → R such that

|G(t, x(t), q(t), λ)| ≤ α(t), a.e. in J ,

for any (q, λ, x) ∈ ΓT , where T denotes the set-valued map which as-
signs to any (q, λ) ∈ Q × [0, 1] the set of solutions of (11)

and

(iii) T (Q × {0}) ⊂ Q,

hold true,

(iv) the solution map T has no fixed points on the boundary ∂Q of Q, for every
(q, λ) ∈ Q × [0, 1].

Then problem (9) has a solution.
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For multiplicity results, we can introduce the following theorem (denoted in
our dissertation as Theorem 4.3). It will be convenient to start with one definition
whose idea is due to R. F. Brown.

Definition 1 We say that the mapping T : Q ⊸ U is retractible onto Q, where
U is an open subset of C(J, Rn) containing Q, if there is a (continuous) retraction
r : U → Q and p ∈ U \ Q with r(p) = q implies that p /∈ T (q).

Its advantage consists in the fact that, for a retractible mapping T : Q ⊸ U
onto Q with a retraction r in the sense of Definition 1, its composition with r,
r|T (Q) ◦ T : Q ⊸ Q, has a fixed point q̂ ∈ Q if and only if q̂ is a fixed point of T .

Theorem 3 Let G : J ×R
n×R

n
⊸ R

n be u-Carathéodory map and assume that

(i) there exists a closed, connected subset Q of C(J, Rn) with a finitely generated
abelian fundamental group such that, for any q ∈ Q, the set T (q) of all
solutions of the linearized problem

{
ẋ(t) ∈ G(t, x(t), q(t)), for a.a. t ∈ J ,

x ∈ S
(12)

is Rδ (e.g. convex and compact or a singleton),

(ii) T (Q) is bounded in C(J, Rn) and T (Q) ⊂ S,

(iii) there exists a locally integrable function α : J → R such that

|G(t, x(t), q(t))| := sup{|y| | y ∈ G(t, x(t), q(t))} ≤ α(t), a.e. in J ,

for any pair (q, x) ∈ ΓT , where ΓT denotes the graph of T .

Assume, furthermore, that

(iv) the solution operator T : Q ⊸ U , related to (12), is retractible onto Q with
a retraction r in the sense of Definition 1.

At last, let
G(t, c, c) ⊂ F (t, c) (13)

for a.a. t ∈ J and any c ∈ R
n. Then the original problem (9) admits at least

N(r|T (Q) ◦ T ) solutions belonging to Q, where N stands for the Nielsen number.

Remark 1 The definition of the Nielsen number is rather sophisticated and its
calculation is usually a difficult task.

Remark 2 In the (single-valued) case of Carathéodory ODEs, we can only as-
sume in Theorem 3(i) that the linearized problem (12) is uniquely solvable. More-
over, the requirement that the fundamental group π(Q) of Q to be finitely gen-
erated and abelian can be then omitted.

10



Application of Theorem 2 leads, for instance, to the following existence result
(denoted in our dissertation as Corollary 5.2)

Theorem 4 Consider problem

{
ẋ(t) + A(t)x(t) ∈ F (t, x(t)), for a.a. t ∈ [0, τ ],

x(0) = x(τ),

where F (t, x) ≡ F (t + τ, x) satisfies the conditions:

(i) F : [0, τ ]×R
n

⊸ R
n is a u-Carathéodory mapping with nonempty, compact

and convex values,

(ii) there are two nonnegative Lebesgue-integrable functions δ1, δ2 : [0, τ ] →
[0,∞) such that

|F (t, x)| ≤ δ1(t) + δ2(t)|x|, for a.a. t ∈ [0, τ ] and all x ∈ R
n,

where |F (t, x)| = sup{|y| | y ∈ F (t, x)}.

Let G : [0, τ ] × R
n × R

n × [0, 1] ⊸ R
n be a product-measurable u-Carathéodory

map such that G(t, c, c, 1) ⊂ F (t, c), for all (t, c) ∈ [0, τ ] × R
n.

Assume that A is a piece-wise continuous (single-valued) bounded τ -periodic
(n × n)-matrix whose Floquet multipliers lie off the unit cycle, jointly with

(iv) there exists a (bounded) retract Q of C([0, τ ], Rn) such that Q \ ∂Q is
nonempty (open) and such that G(t, x, q(t), λ) is Lipschitzian in x with
a sufficiently small Lipschitz constant, for a.a. t ∈ [0, τ ] and each (q, λ) ∈
Q × [0, 1],

(v) there exists a Lebesgue integrable function α : [0, τ ] → [0,∞) such that

|G(t, x(t), q(t), λ)| ≤ α(t), a.e. in [0, τ ]

for any (x, q, λ) ∈ ΓT (i.e. from the graph of T ), where T denotes the set-
valued map which assigns, to any (q, λ) ∈ Q × [0, 1], the set of solutions
of {

ẋ(t) + A(t)x(t) ∈ G(t, x(t), q(t), λ), for a.a. t ∈ [0, 1],

x(0) = x(τ),

(vi) T (Q×{0}) ⊂ Q holds and ∂Q is fixed point free w.r.t. T , for every (q, λ) ∈
Q × [0, 1].

Then the inclusion ẋ + A(t)x ∈ F (t, x) admits a τ -periodic solution.
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Remark 3 Since in Theorem 4 the associated homogeneous problem has ob-
viously only the trivial solution, the requirement T (Q × {0}) ⊂ Q reduces to
{0} ⊂ Q, provided G(t, x, q, λ) = λG(t, x, λ), λ ∈ [0, 1].

Remark 4 The requirement concerning a fixed point free boundary ∂Q of Q in
Theorem 4 can be verified by means of bounding (Liapunov-like) functions (see
C1[13], C1[36], C1[47] and cf. [AG, Chapter III.8]).

Application of Theorem 3 leads to the following multiplicity result (denoted
in our dissertation as Theorem 6.2).

Theorem 5 Let suitable positive constants δ1, δ2 exist such that the inequalities





1

|a|
|e0δ

1/m
2 − G| ≥ δ1 >

(
H

f0

)n

,

1

|b|
|f0δ

1/n
2 − H| ≥ δ2 >

(
G

e0

)m
(14)

are satisfied for constants e0, f0, G,H estimating the product-measurable u-Ca-
rathéodory or l-Carathéodory multivalued functions (with nonempty, convex and
compact values) e, f, g, h as above, for constants a, b with ab > 0 and for odd
integers m,n with min(m,n) ≥ 3. Then system

{
ẋ + ax ∈ e(t, x, y)y(1/m) + g(t, x, y),

ẏ + by ∈ f(t, x, y)x(1/n) + h(t, x, y),
(15)

admits at least two entirely bounded solutions. In particular, if multivalued func-
tions e, f, g, h are still ω-periodic in t, then system (15) admits at least tree ω-
periodic solutions, provided the sharp inequalities appear in (14).

Remark 5 Unfortunately, because of the invariance (w.r.t. the solution operator
T1) of the subdomains

{
q(t) ∈ C

([
−

ω

2
,
ω

2
, R2

)∣∣∣0 < δ1 ≤ q1(t) ≤ R ∧ 0 < δ2 ≤ q2(t) ≤ R

}

and
{

q(t) ∈ C
([

−
ω

2
,
ω

2
, R2

)∣∣∣ − R ≤ q1(t) ≤ −δ1 < 0 ∧ −R ≤ q2(t) ≤ −δ2 < 0

}
,

for each ω ∈ (−∞,∞), the same result can also be obtained, for example, by
means of the fixed point index.

Remark 6 In order to avoid the handicap in Remark 5, we were able to modify
the result in Theorem 5 for a functional planar system. The related result is
denoted in our dissertation as Theorem 6.3.
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e) Presentations and applications

Many results in the present dissertation were generalized and extended in further
papers. They also became a basis for a further elaboration of our PhD students
in their thesis (7 finished doctors and 2 PhD students under our supervision).
The author presented these results at many international conferences and sem-
inars at the universities. The results also allowed us an intensive international
collaboration (especially with Italian and recently with French colleagues). The
author had many invited talks at 2 American and many European universities. In
the last three years he was a visiting professor at Université Paris 1–Panthéon–
Sorbonne; before he was for many years a visiting professor at Universita di
Roma 1–LaSapienza.

The majority of the results in our dissertation has a character of new methods.
These methods can be applied e.g. in the optimal control problems or in the
problems, where the generating vector fields are discontinuous at space variables
(e.g. dry friction problems).

The publications were supported by the Council of Czech Government (MSM
619 895 92 14).
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C1[22] Andres, J., Šnyrychová, P., Szuca, P.: Sharkovskii’s theorem for connectiv-

ity Gδ-relations. Int. J. Bifurc. Chaos 16, 8 (2006), 2377–2393. IF: 0.870

C1[23] Andres, J., Wong, P.: Relative Nielsen theory for noncompact spaces and

maps. Topology Appl. 153 (2006), 1961–1974. IF: 0.362

C1[24] Andres, J., Bersani, A. M., Radová, L.: Almost-periodic solutions in vari-
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C1[42] Andres, J., Fǐser, J., Jüttner, L.: On a multivalued version of the Sharkovskii
theorem and its application to differential inclusions. Set-Valued Anal. 10,
1 (2002), 12–14. IF: 0.714
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mat. 3 (1986), 225–229.
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C2[6] Andres, J.: Poincaré’s translation multioperator revisited. In: “Proceed.
of the 3rd Symp. on Nonlin. Anal.” (ed. by W. Kryszewski and A.
Nowakowski), LN in Nonlin. Anal. 3, 2002, 7–22.

C2[7] Andres, J.: Nielsen number and multiplicity results for multivalued boundary
value problems., Grossinho, M. R. (ed.) et al., Nonlinear analysis and its
applications to differential equations. Papers from the autumn school on
nonlinear analysis and differential equations, Lisbon, Portugal, September
14-October 23, 1998. Boston, MA: Birkhäuser. Prog. Nonlinear Differ. Equ.
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52–56.

D[2] Andres, J.: La scienza postmoderna e il cristianesimo. Quadermi di Simme-
tria 4, Roma, (2007), 1–14.

D[3] Andres, J.: Šarkovského věta pro diferenciálńı rovnice (Role č́ısel 1, 2, 3,
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D[7] Andres, J., Górniewicz, L., Nistri, P. (eds.): Differential Inclusions and Opti-
mal Control. LN in Nonlin. Anal. 2, Schauder Center for Nonlinear Studies,
Toru, 1998.

27



D[8] Andres, J.: Matematika v d́ıle Pavla A. Florenského [Mathematics in the
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Lódź, Poland (January 29–31, 2001)
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