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Summary

Numerous real-world phenomena have been traditionally modeled us-
ing partial differential equations. However, there are situations where it
is more natural to consider models on discrete spatial domains, which
are formulated in terms of semidiscrete or purely discrete evolution
equations. For instance, this is common in mathematical biology when
modeling populations living in fragmented habitats (islands, ponds,
etc.), signal propagation between neurons, etc. Discrete-space evo-
lution equations are also interesting from the viewpoint of numerical
mathematics, since they often correspond to discretizations (or semidis-
cretizations) of PDEs.

The dissertation represents a collection of articles on various phe-
nomena related to discrete-space equations, with a particular emphasis
on linear diffusion equations and nonlinear reaction-diffusion equations.
We deal with various topics such as well-posedness, asymptotic behav-
ior of solutions, explicit formulas for fundamental solutions of linear
equations, or the validity of maximum principles. We pay special at-
tention to the existence of heterogenous equilibrium states, which is
a characteristic feature of discrete-space models that has no analogue
in the corresponding PDE models. As an illustration, we provide a de-
tailed overview of the Lotka-Volterra competition model on graphs.

The goal of the present theses is to explain the basic ideas and
results contained in the dissertation in an accessible and reader-friendly
way. The proofs of all results as well as additional technical details are
available in the dissertation itself, which consists of the following twelve
journal articles:

[AS1] A. Slav́ık, P. Stehĺık: Dynamic diffusion-type equations on dis-
crete-space domains. J. Math. Anal. Appl. 427 (2015), 525–545.
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Chapter 1

Linear diffusion
equations on Z and ZN

The present chapter is based on the papers [AS1], [AS2], [AS3], [AS4],
[AS6], [AS9], [AS11], [AS12].

1.1 Introduction

The classical diffusion (heat) equation ∂u
∂t = k ∂2u

∂x2 and its generaliza-
tions serve as models for many real-world phenomena. In this chapter,
we consider a class of diffusion-type equations with discrete space and
arbitrary (continuous, discrete or mixed) time, namely

u∆(x, t) = au(x+1, t)+ bu(x, t)+ cu(x− 1, t), x ∈ Z, t ∈ T, (1.1.1)

where T is a time scale (arbitrary closed subset of R). The symbol
u∆ denotes the partial ∆-derivative with respect to t, which becomes
the usual partial derivative ∂u

∂t when T = R, and the forward partial
difference u(x, t+ 1)− u(x, t) when T = Z. In this way, we are able to
study equations with continuous, discrete or mixed time domains in a
unified way. Readers who are not familiar with the time scales calculus
might consult [4] or [14].

Equations of the form (1.1.1) include the following special cases:

� When a = c and b = −2a, Eq. (1.1.1) represents a discretized
version of the classical diffusion equation. Depending on the time

5



scale, we can obtain the semidiscrete diffusion equation (T = R),
or the purely discrete diffusion equation (T = Z).

� The case a = 0 and 0 < c = −b corresponds to the discrete-space
transport equation.

� For T = Z, a = c = 1/2 and b = −1, Eq. (1.1.1) reduces to

u(x, t+ 1) =
1

2
u(x+ 1, t) +

1

2
u(x− 1, t), (1.1.2)

which (together with the conditions u(0, 0) = 1 and u(x, 0) = 0
for x ̸= 0) describes the one-dimensional symmetric random walk
on Z starting from the origin; the value u(x, t) is the probability
that the random walk visits point x at time t. More generally,
consider a nonsymmetric random walk on Z, where the probabil-
ities of going left, standing still, or going right are p, q, r ∈ [0, 1],
with p+ q+ r = 1. This random walk is described by Eq. (1.1.1),
where T = Z, a = p, b = q − 1 and c = r. For T = R, we ob-
tain a continuous-time random walk. Finally, for a general time
scale T, solutions of (1.1.1) can be regarded as heterogeneous
stochastic processes.

Applications of (1.1.1) go far beyond stochastic processes. For ex-
ample, the semidiscrete diffusion equation appears in signal and image
processing [21], while the discrete diffusion equation has been used to
model mutations in biology [5]. From a theoretical point of view, our
work could be perceived as a contribution to the study of partial dy-
namic equations (see, e.g., [1, 15, 17, 22]), as well as infinite systems of
ordinary dynamic equations (see, e.g., [24]).

1.2 Basic results

A natural starting point is to investigate existence and uniqueness of
solutions to initial-value problems for the equation (1.1.1). For the clas-
sical diffusion equation with continuous time and space, initial-value
problems on the whole real line do not have unique solutions (this was
shown by Tychonoff [33]; see also [18]). Also, note that (1.1.1) repre-
sents a countable system of dynamic equations; the fact that initial-
value problems for countable systems of differential equations need not
have unique solutions was also observed by Tychonoff [32].
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The following construction shows that solutions of Eq. (1.1.1) with
a given initial condition need not be unique. Consider the time scale
T = R. Take a pair of infinitely differentiable functions f, g : R → R
such that f (i)(0) = 0 and g(i)(0) = 0 for every i ∈ N0. Let u(0, t) = f(t)
and u(1, t) = g(t) for every t ∈ R. It remains to define u(x, t) for
x ∈ Z \ {0, 1} so that

∂u

∂t
(x, t) = au(x+ 1, t) + bu(x, t) + cu(x− 1, t) (1.2.1)

for all x ∈ Z and t ∈ R. Assuming that a, c ̸= 0, the formulas

u(x+ 1, t) =
1

a

(
∂u

∂t
(x, t)− bu(x, t)− cu(x− 1, t)

)
, x ≥ 1, t ∈ R,

u(x− 1, t) =
1

c

(
∂u

∂t
(x, t)− au(x+ 1, t)− bu(x, t)

)
, x ≤ 0, t ∈ R,

determine the remaining values u(x, t) uniquely. By the properties
of f and g, we have u(x, 0) = 0 for every x ∈ Z. Since there are
infinitely many possibilities of choosing f and g, it follows that (1.2.1)
has infinitely many solutions corresponding to the zero initial condition
at t = 0. Obviously, one solution is the zero solution, which corresponds
to f = g = 0. It can be shown (cf. Theorem 1.2.1 below) that all
nonzero solutions display a curious behavior: they are unbounded on
all sets of the form Z × [0, ε], where ε > 0 can be arbitrarily small.
Conversely, it turns out that if we restrict our attention to solutions
which are bounded on all sets of the form Z × [a, b], where [a, b] ⊂ R,
then all initial-value problems with bounded initial conditions have
a unique solution; this is the content of Theorem 1.2.1 below.

There are other reasons why unbounded solutions are pathological.
For example, consider the previous construction with f identically zero
and g(t) = −e−1/t2 . Then the initial condition at t = 0 is symmetric
with respect to the origin, but the solution does not maintain this
property and is odd in x. Also, the solution violates the maximum and
minimum principles.

Let ℓ∞(Z) denote the space of all bounded real sequences {un}n∈Z
equipped with the supremum norm ∥u∥∞ = supn∈Z |un|. The next
result guarantess the existence and uniqueness of forward and backward
bounded solutions. Its statement involves the graininess operator µ,
which measures the sizes of gaps between time scale points, and is
defined as follows:

µ(t) = inf{s ∈ T : s > t} − t, t ∈ T.
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Also, we use the notation [a, b]T to denote the time scale interval [a, b]∩T
with endpoints a, b ∈ T, a ≤ b. Open and half-open time scale intervals
are denoted in a similar way.

Theorem 1.2.1. Consider an interval [T1, T2]T and t0 ∈ [T1, T2]T. Let
u0 ∈ ℓ∞(Z). Assume that µ(t) < 1

|a|+|b|+|c| for every t ∈ [T1, t0)T.

Then, there exists a unique bounded solution u : Z × [T1, T2]T → R
of Eq. (1.1.1) such that u(x, t0) = u0

x for every x ∈ Z.

The proof of existence is easy: Instead of Eq. (1.1.1), one can con-
sider the abstract equation U∆(t) = AU(t), where U takes values in
ℓ∞(Z), and A : ℓ∞(Z) → ℓ∞(Z) is a linear operator given by

A({un}n∈Z) = {aun+1 + bun + cun−1}n∈Z. (1.2.2)

This operator is bounded and has norm ∥A∥ = |a|+ |b|+ |c|. In view of
the graininess condition, I+Aµ(t) is invertible for all t ∈ [T1, t0)T, which
in turn implies the existence of a solution U . The proof of uniqueness
is longer, but involves only elementary estimates.

The graininess condition µ(t) < 1
|a|+|b|+|c| in Theorem 1.2.1 applies

to backward solutions only, and cannot be omitted. For example, let
a = c = 1, b = −2, and consider the time scale T = 1

4Z = {n
4 , n ∈ Z},

which violates the graininess condition:

� For the zero initial condition at t = 0, it is easy to check that
u(x,−1/4) = (−1)xα, x ∈ Z, satisfies Eq. (1.1.1) for every α ∈ R.
Hence, in general, bounded backward solutions need not be unique.

� For the initial condition

u(x, 0) =

{
1 if x = 0,

0 if x ̸= 0,

one can show that it is impossible to find a bounded sequence
{u(x,−1/4)}x∈Z so that Eq. (1.1.1) is satisfied. Therefore, in gen-
eral, bounded backward solutions need not exist once the graini-
ness condition is violated.

Another basic result is the superposition principle. Eq. (1.1.1) is
linear, and every finite linear combination of solutions is a solution
again. The next theorem shows that under certain assumptions, it
makes sense to consider infinite linear combinations as well.
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Theorem 1.2.2. Let uk : Z × [t0, T ]T → R, k ∈ N, be a sequence of
bounded solutions of Eq. (1.1.1). Assume there exists a β > 0 such
that

∑∞
k=1 |uk(x, t0)| ≤ β for every x ∈ Z. Then, for every bounded

sequence {ck}∞k=1, the function u(x, t) =
∑∞

k=1 ckuk(x, t) is a solution
of Eq. (1.1.1) on Z× [t0, T ]T.

An important corollary is that for each arbitrary initial condition
from ℓ∞(Z), we can express the corresponding unique bounded solution
of (1.1.1) in terms of the so-called fundamental solution (the function u
in the next statement).

Corollary 1.2.3. Let u : Z × [t0, T ]T → R be the unique bounded
solution of Eq. (1.1.1) corresponding to the initial condition

u(x, t0) =

{
1 if x = 0,

0 if x ̸= 0.

If {ck}k∈Z is an arbitrary bounded real sequence, then

v(x, t) =
∑
k∈Z

cku(x− k, t)

is the unique bounded solution of Eq. (1.1.1) corresponding to the initial
condition v(x, t0) = cx, x ∈ Z.

The next result shows that for equations with a + b + c = 0, the
sum

∑
x∈Z u(x, t) is the same for all t.

Theorem 1.2.4. Let u : Z × [T1, T2]T → R be a bounded solution of
Eq. (1.1.1) with a+ b+ c = 0. Assume that:

� For a certain t0 ∈ [T1, T2]T, the sum
∑

x∈Z |u(x, t0)| is finite.

� µ(t) < 1
|a|+|b|+|c| for every t ∈ [T1, t0)T.

Then
∑

x∈Z u(x, t) =
∑

x∈Z u(x, t0) for every t ∈ [T1, T2]T.

We conclude our survey of basic results with the minimum and
maximum principles.

Theorem 1.2.5. Let a, b, c be such that a, c ≥ 0, b ≤ 0. Consider
a bounded solution u : Z × [T1, T2]T → R of Eq. (1.1.1). Moreover,
assume that µ(t) ≤ −1/b for every t ∈ [T1, T2)T. Then the following
statements are true for all K ≥ 0:
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� If a+b+c ≥ 0 and u(x, T1) ≥ K for every x ∈ Z, then u(x, t) ≥ K
for all t ∈ [T1, T2]T, x ∈ Z.

� If a+b+c ≤ 0 and u(x, T1) ≤ K for every x ∈ Z, then u(x, t) ≤ K
for all t ∈ [T1, T2]T, x ∈ Z.

The proof is interesting because it utilizes some ideas from product
integration theory. If T is purely discrete, one can obtain the values
of the solution at any time t as a composition of monotone operators
applied to the initial condition. For a general time scale, one passes to
the limit and uses the fact that a limit of monotone operators is again
monotone.

If a+ b+ c = 0, both minimum and maximum principles hold, and
we get two important consequences:

� Stability of solutions. If u, v is a pair of solutions of Eq. (1.1.1)
such that |u(x, T1) − v(x, T1)| ≤ ε for every x ∈ Z, we can
apply Theorem 1.2.5 to the function u − v and conclude that
|u(x, t)− v(x, t)| ≤ ε for all x ∈ Z, t ≥ T1.

� Global boundedness. We know from Theorem 1.2.1 that for every
t1 ∈ [t0,∞)T, Eq. (1.1.1) has a unique bounded solution on Z ×
[t0, t1]T. It follows from Theorem 1.2.5 that these solutions are
always bounded by the same constant independent of t1. Hence,
Eq. (1.1.1) has a unique bounded solution on Z × [t0,∞)T. On
the other hand, when a + b + c ̸= 0, we still have a solution on
Z × [t0,∞)T, but it need not be globally bounded (consider the
case a = c = 0, b = 1).

1.3 More general problems

Most results of the previous section can be extended to more general
equations having the form

u∆(x, t) =

m∑
i=−m

aiu(x+ i, t), x ∈ Z, t ∈ T,

where m ∈ N, and a−m, . . . , am ∈ R. We omit the details and refer the
reader to the paper [AS3], which also discusses the relation between
this type of equations and stochastic processes.

An even more general setting can be found in [AS4], which deals
with multidimensional systems: Assume that N ∈ N, e1, . . . , eN is
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the canonical basis of RN , n, r ∈ N, and A(i1,...,iN ) ∈ Rn×n for all
i1, . . . , iN ∈ {−r, . . . , r}. One can consider systems of n first-order
equations written in the vector form

u∆(x, t) =
∑

i1,...,iN∈{−r,...,r}

A(i1,...,iN )u
(
x+

∑N
k=1 ikek, t

)
, t ∈ T, x ∈ ZN ,

(1.3.1)
with the unknown function u : ZN × T → Rn. Thus, each compo-
nent of u∆(x, t) is a linear combination of the values of u lying in
the N -dimensional hypercube centered at x and whose side has length
2r + 1. Special cases of this general problem include the N -dimensional
discrete-space diffusion equation

u∆(x, t) = a

(
N∑
i=1

u(x+ ei, t)− 2Nu(x, t) +

N∑
i=1

u(x− ei, t)

)
,

as well as the N -dimensional discrete-space wave equation

u∆∆(x, t) = c2

(
N∑
i=1

u(x+ ei, t)− 2Nu(x, t) +

N∑
i=1

u(x− ei, t)

)
,

which is equivalent to the first-order system

u∆(x, t) = v(x, t),

v∆(x, t) =

N∑
i=1

c2u(x+ ei, t)− 2Nc2u(x, t) +

N∑
i=1

c2u(x− ei, t),

i.e., it has the form (1.3.1) with n = 2, r = 1, A(0,...,0) =

(
0 1

−2Nc2 0

)
,

A(i1,...,iN ) =

(
0 0
c2 0

)
if exactly one of the i1, . . . , iN is nonzero and

equals ±1, and A(i1,...,iN ) =

(
0 0
0 0

)
otherwise.

We refer the reader to [AS4] for more details.

1.4 Fundamental solutions

There are several methods for finding explicit formulas for fundamental
solutions of linear discrete-space equations. Let us look for the unique
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bounded solution of the initial-value problem

u∆(x, t) = au(x+ 1, t) + bu(x, t) + cu(x− 1, t),

u(x, t0) =

{
1 if x = 0,

0 if x ̸= 0,

(1.4.1)

where a, b, c are arbitrary real numbers.
Perhaps the most powerful method is based on generating functions.

Given a sequence {un}n∈Z, its generating function is the series U(z) =∑∞
n=−∞ unz

n. Depending on the context, the series can be interpreted
either as a classical Laurent series, or as a formal Laurent series.

Assume that u is the solution of the initial-value problem (1.4.1),
and let F (z, t) =

∑∞
x=−∞ u(x, t)zx; hence, for every fixed t ∈ T, the

function z 7→ F (z, t) is the generating function of {u(x, t)}x∈Z. Using
(1.4.1) and some elementary manipulations, we obtain

F∆(z, t) = (a/z + b+ cz)F (z, t),

and F (z, t0) =
∑∞

x=−∞ u(x, t0)z
x = 1. Hence, we have a first-order

linear dynamic equation for the function F . Its solution is given by the
time scale exponential function F (z, t) = ea/z+b+cz(t, t0).

Given a particular time scale T, it is enough to calculate the value
of ea/z+b+cz(t, t0), find its Laurent series expansion with respect to z,
and look at the coefficient of zx to find an explicit formula for u(x, t).

As an illustration, let T = R and t0 = 0. The time scale exponential
function ea/z+b+cz(t, t0) reduces to the classical exponential function

e(a/z+b+cz)t. Therefore, our generating function method gives

F (z, t) = e(a/z+b+cz)t = ebte(a/z+cz)t.

To obtain the series expansion of F , we need the identity

ew/2(z+1/z) =

∞∑
x=−∞

Ix(w)z
x,

where Ix(w) =
∑∞

k=0
1

Γ(k+x+1)k!

(
w
2

)2k+x
is the modified Bessel func-

tion of the first kind. Assuming that a, c ̸= 0, we get

F (z, t) = ebte
√
ac

( √
a√
cz

+
√

cz√
a

)
t
= ebt

∞∑
x=−∞

Ix(2t
√
ac)

(√
c

a
z

)x

,
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which leads to the result

u(x, t) = ebtIx(2t
√
ac)

(√
c

a

)x

, x ∈ Z, t ∈ R.

For symmetric right-hand sides with a = c, the solution simplifies to

u(x, t) = ebtIx(2at), x ∈ Z, t ∈ R. (1.4.2)

Additional examples can be found in [AS2]. The same method also
works for the discrete-space wave equation, see [AS4].

For T = Z, the fundamental solution of the purely discrete diffusion
equation

u(x, t+ 1)− u(x, t) = d
(
u(x+ 1, t)− 2u(x, t) + u(x− 1, t)

)
(1.4.3)

obtained from the generating function method has the form

u(x, t) =

t∑
j=0

(
t

j, t− 2j − x, j + x

)
d2j+x(1− 2d)t−2j−x.

Yet another approach was presented in [AS6]: Following the ideas of [3],
one can introduce the modified discrete Bessel functions Ic

n, which are
defined on N0, and satisfy a certain difference equation similar to the
modified Bessel differential equation. Consequently, it turns out that
the fundamental solution of (1.4.3) can be expressed (for d ̸= 1/2) as

u(x, t) = (1− 2d)tI2d/(1−2d)
|x| (t), x ∈ Z, t ∈ N0,

which is formally similar to (1.4.2) (note that (1 − 2d)t is a discrete
exponential function). An advantage of the latter formula is that we
immediately see that for each x ∈ Z, the function t 7→ u(x, t) is non-
negative if d ∈ (0, 1/2), and oscillatory if d > 1/2.

In a similar way, one can express the fundamental solutions of the
purely discrete wave equation in terms of the discrete Bessel functions
J c
n , and study their oscillatory properties. For more details, see [AS6].

1.5 Unimodality

Recall that the fundamental solution of the semidiscrete equation

∂u

∂t
(x, t) = au(x+ 1, t) + bu(x, t) + au(x− 1, t), x ∈ Z, t ≥ 0,
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is given by the formula u(x, t) = ebtIx(2at), where Ix is the modified
Bessel function of order x. For each fixed t ≥ 0, the function x 7→ u(x, t)
is increasing on the set of negative integers, attains its maximum at
zero, and is decreasing on the set of positive integers. According to the
following definition, the sequence {u(x, t)}x∈Z is unimodal about zero.

Definition 1.5.1. A sequence {an}n∈Z is unimodal about a mode
n0 ∈ Z if an ≥ an−1 for all n ≤ n0, and an ≤ an−1 for all n ≥ n0 + 1.

The situation is different when T = Z. For example, the fundamen-
tal solution of the discrete diffusion equation (1.4.3) with d = 1/2 is

u(x, t) =

{(
t

t+x
2

)
1
2t if t+ x is even,

0 if t+ x is odd.

Hence, x 7→ u(x, t) does not attain its maximum at x = 0 when t is
odd, and it is unimodal only for t = 0.

We now provide necessary and sufficient conditions for unimodal-
ity of the fundamental solution for a wider class of discrete diffusion
equations having the form

u(x, t+ 1)− u(x, t) =

m∑
i=−m

aiu(x+ i, t), x ∈ Z, t ∈ N0, (1.5.1)

where m ∈ N. Consider the following conditions on a−m, . . . , am ∈ R:

(C1)
∑m

i=−m ai = 0.

(C2) ai = a−i for each i ∈ {1, . . . ,m}.
(C3) −1 ≤ a0 ≤ 0, and ai ≥ 0 for all i ∈ {−m, . . . ,m} \ {0}.

The proof of the following result uses the fact that the convolution
of two symmetric discrete unimodal distributions is unimodal.

Theorem 1.5.2. Suppose that (C1)–(C3) hold. Then the fundamental
solution of (1.5.1) is unimodal for every t ∈ N0 if and only if

1 + a0 ≥ a1 ≥ · · · ≥ am. (1.5.2)

In this case, the fundamental solution is unimodal about zero.

Even if the assumption (1.5.2) does not hold, weaker conditions
suffice to ensure that the fundamental solution {u(x, t)}x∈Z is unimodal
for all sufficiently large t ∈ N0. The proof of the next theorem relies on
a deep result on the unimodality of high convolutions proved in [26].
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Theorem 1.5.3. Suppose that conditions (C1)–(C3) hold, am > 0,
and either m > 1 and am−1 > 0, or m = 1 and a0 ∈ (−1, 0). Then
there exists a t0 ∈ N0 such that {u(x, t)}x∈Z is unimodal about zero for
every t ≥ t0.

As an example, consider the discrete diffusion equation

u(x, t+ 1)− u(x, t) = a(u(x− 1, t)− 2u(x, t) + u(x+ 1, t)).

In this case, the values of the fundamental solution for t = 1 are

(. . . , 0, a, 1− 2a, a, 0, . . .).

Thus, x 7→ u(x, 1) has maximum at x = 0 if and only if 1−2a ≥ a, i.e.,
if a ≤ 1

3 . In this case, condition (1.5.2) is satisfied, and Theorem 1.5.2
implies that for each t ∈ N0, {u(x, t)}x∈Z is unimodal about zero and
therefore has a global maximum at zero.

The assumptions of Theorem 1.5.3 require that −2a ∈ (−1, 0).
Thus, for a ∈ (0, 1

2 ), Theorem 1.5.3 guarantees that {u(x, t)}x∈Z is
unimodal about zero for all sufficiently large t.

1.6 Asymptotic behavior of solutions

In this section, we investigate the asymptotic behavior of solutions to
various types of linear diffusion equations on discrete domains.

The first result deals with the semidiscrete diffusion equation

∂u

∂t
(x, t) = a(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)), x ∈ Z, t ≥ 0, (1.6.1)

u(x, 0) = cx, x ∈ Z. (1.6.2)

It says that if the average of the initial values limk→∞
1

2k+1

∑k
l=−k cl

exists and equals d, then limt→∞ u(x, t) = d for each x ∈ Z. Under
additional assumptions, the limit is uniform with respect to x. In fact,
the result is more general and provides information on the limit superior
and limit inferior of u(x, t) as t → ∞ even in the case when the average
of the initial values does not exist. The corresponding results for the

classical one-dimensional diffusion equation ∂u
∂t = a∂2u

∂x2 are well known;
see e.g. [28, 31] and the references therein.

Theorem 1.6.1. For each bounded real sequence {ck}k∈Z, the unique
bounded solution of (1.6.1)–(1.6.2) has the following properties:
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1. For every x ∈ Z,

lim inf
k→∞

∑x+k
l=x−k cl

2k + 1
≤ lim inf

t→∞
u(x, t) ≤ lim sup

t→∞
u(x, t) ≤ lim sup

k→∞

∑x+k
l=x−k cl

2k + 1
.

2. If x ∈ Z and limk→∞
1

2k+1

∑x+k
l=x−k cl = d, then limt→∞ u(x, t) = d.

3. If limk→∞
1

2k+1

∑x+k
l=x−k cl = d holds uniformly for all x ∈ Z, then

limt→∞ u(x, t) = d uniformly with respect to x ∈ Z.

The proof is based on the explicit solution formula

u(x, t) = e−2at
∑
k∈Z

ckIx−k(2at), x ∈ Z, t ≥ 0,

as well as summation by parts and certain properties of the modified
Bessel functions. Here are two useful corollaries of Theorem 1.6.1.

Corollary 1.6.2. If {ck}k∈Z is a bounded real sequence such that

limk→∞
1

2k+1

∑k
l=−k cl = d, then the unique bounded solution of (1.6.1)–

(1.6.2) satisfies limt→∞ u(x, t) = d for each x ∈ Z.

Corollary 1.6.3. If {ck}k∈Z is such that limk→±∞ ck = d, then the
unique bounded solution of (1.6.1)–(1.6.2) satisfies limt→∞ u(x, t) = d
uniformly with respect to x.

In fact, it is not difficult to obtain a more general result: If {ck}k∈Z
is almost convergent to d1 for k → ∞ and to d2 for k → −∞, then
the unique bounded solution to the initial-value problem (1.6.1)–(1.6.2)
satisfies limt→∞ u(x, t) = (d1 + d2)/2 uniformly with respect to x.

Note that if {ck}k∈Z ∈ ℓp(Z) for an arbitrary p ∈ [1,∞), then
limk→±∞ ck = 0, and Corollary 1.6.3 yields limt→∞ u(x, t) = 0 uni-
formly with respect to x. This generalizes a result from [13, Theorem 4]
dealing with the case p = 2.

A result similar to Theorem 1.6.1 can be derived for the N -dimen-
sional semidiscrete diffusion equation

∂u

∂t
(x, t) = a

(
N∑
i=1

u(x+ ei, t)− 2Nu(x, t) +

N∑
i=1

u(x− ei, t)

)
,

where x ∈ ZN , t ≥ 0, and e1, . . . , eN is the canonical basis of RN . We
omit the details, and refer the reader to [AS12].
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We conclude with the purely discrete case, where we are able to
deal with a larger class of discrete-space equations having the form

u(x, t+ 1)− u(x, t) =

m∑
i=−m

aiu(x+ i, t), x ∈ Z, t ∈ N0. (1.6.3)

Theorem 1.6.4. Suppose that a0 > −1, a1, . . . , am > 0, ai = a−i for
each i ∈ {1, . . . ,m}, and ∑m

i=−m ai = 0. Let {ck}k∈Z be a bounded real

sequence, and denote Al(x) =
1

2l+1

∑x+l
k=x−l ck for l ∈ N0, x ∈ Z.

Then the unique solution of (1.6.3) satisfying u(x, 0) = cx for all
x ∈ Z has the following properties:

1. For every x ∈ Z,

lim inf
l→∞

Al(x) ≤ lim inf
t→∞

u(x, t) ≤ lim sup
t→∞

u(x, t) ≤ lim sup
l→∞

Al(x).

2. If x ∈ Z and liml→∞ Al(x) = d, then limt→∞ u(x, t) = d.

3. If liml→∞ Al(x) = d uniformly for all x ∈ Z, then limt→∞ u(x, t) = d
uniformly for all x ∈ Z.

Interestingly, the proof is more complicated that in the semidiscrete
case. The first step is to prove that for t → ∞, the fundamental solution
of (1.6.3) is uniformly convergent to zero. We do not have an explicit
formula for this solution, but we have discovered two completely dif-
ferent proofs of this statement: The first one is based on the relation
between diffusion-type equations and random walks. A random walk
arises from the sum of independent and identically distributed random
variables, and by the local limit theorem for random variables with lat-
tice distribution, the distribution of these sums approaches a suitably
scaled normal distribution. The second proof is based on the maxi-
mum principle; it is longer, but can be easily adapted to the multidi-
mensional setting. The rest of the proof of Theorem 1.6.4 is similar to
the semidiscrete case, and relies on the properties of the fundamental
solution including the unimodality result from Theorem 1.5.3.

For the discrete diffusion equation

u(x, t+ 1)− u(x, t) = a(u(x− 1, t)− 2u(x, t) + u(x+ 1, t)),

the previous theorem guarantees that if a ∈ (0, 1
2 ), then limt→∞ u(x, t) =

liml→∞ Al(x) whenever the latter limit exists. One can show that the
same conclusion no longer holds for a ≥ 1

2 (see [AS11]).
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Chapter 2

Reaction-diffusion
equations on Z

The present chapter is based on the papers [AS5], [AS7].

2.1 Well-posedness and maximum
principles for scalar equations

The classical reaction-diffusion equation ∂u
∂t = k ∂2u

∂x2 +f(u) is frequently
used to describe the evolution of chemical concentrations, tempera-
tures, populations, etc., in phenomena that combine a local dynamics
(via the reaction function f) and a spatial dynamics (via the diffusion).

Various authors have also considered the semidiscrete lattice reaction-
diffusion equation [7, 8, 37, 38]

∂u

∂t
(x, t) = k(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)) + f(u(x, t))

with x ∈ Z, t ∈ [0,∞), as well as the purely discrete reaction-diffusion
equation [9, 8, 16]

u(x, t+ 1)− u(x, t) = k(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)) + f(u(x, t))

with x ∈ Z, t ∈ N0. Both equations are interesting from the viewpoint
of numerical mathematics (since they correspond to semi- or full dis-
cretization of the original reaction-diffusion equation [16]) as well as
potential applications (e.g., in population dynamics).
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As before, in order to consider both cases at once, we use the
language of the time scale calculus. We do not restrict ourselves to
symmetric diffusion and consider the nonautonomous reaction-diffusion
equation

u∆(x, t) = au(x+1, t)+bu(x, t)+cu(x−1, t)+f(u(x, t), x, t), (2.1.1)

where x ∈ Z, t ∈ T, a, b, c ∈ R, T ⊆ R is a time scale, and the
symbol u∆ denotes the delta derivative with respect to time. Our
results are new even in the special cases T = R (when u∆ becomes the
partial derivative ∂u

∂t ) and T = Z (when u∆ is the partial difference
u(x, t+ 1)− u(x, t)).

If a = c and b = −2a, then (2.1.1) becomes the symmetric lattice
reaction-diffusion equation. The asymmetric case a ̸= c, b = −(a + c)
corresponds to the lattice reaction-advection-diffusion equation. Next,
if c = 0 and b = −a, or if a = 0 and b = −c, then (2.1.1) reduces to the
lattice reaction-transport equation.

We focus on well-posedness results as well as maximum principles
for the equation (2.1.1). We begin with the local existence and global
uniqueness of solutions to the initial-value problem

u∆(x, t) = au(x+ 1, t) + bu(x, t) + cu(x− 1, t) + f(u(x, t), x, t),

u(x, t0) = u0
x,

(2.1.2)
where {u0

x}x∈Z is a bounded real sequence and t0, T ∈ T.
We impose the following conditions on f : R× Z× [t0, T ]T → R:

(H1) f is bounded on each set B×Z×[t0, T ]T, where B ⊂ R is bounded.

(H2) f is Lipschitz-continuous in the first variable on each set B×Z×
[t0, T ]T, where B ⊂ R is bounded.

(H3) For each bounded set B ⊂ R and each choice of ε > 0 and t ∈
[t0, T ]T, there exists a δ > 0 such that if s ∈ (t−δ, t+δ)∩ [t0, T ]T,
then |f(u, x, t)− f(u, x, s)| < ε for all u ∈ B, x ∈ Z.

Theorem 2.1.1. Assume that f : R×Z× [t0, T ]T → R satisfies (H1)–
(H3). Then for each u0 ∈ ℓ∞(Z), the initial-value problem (2.1.2) has
a bounded local solution on Z× [t0, t0+ δ]T, where δ > 0 and δ ≥ µ(t0).

Recall that even in the linear case f ≡ 0, the solutions of (2.1.2)
are not unique in general, and uniqueness can be expected only in the
class of bounded solutions.
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Theorem 2.1.2. Assume that f : R× Z× [t0, T ]T → R satisfies (H1)
and (H2). Then for each u0 ∈ ℓ∞(Z), the initial-value problem (2.1.2)
has at most one bounded solution u : Z× [t0, T ]T → R.

Our next task is to investigate the maximum principles. For an
initial condition u0 ∈ ℓ∞(Z), let

m = inf
x∈Z

u0
x, M = sup

x∈Z
u0
x.

We introduce the notation

µT = max
t∈[t0,T )T

µ(t)

as well as the following conditions.

(H4) a, b, c ∈ R are such that a, c ≥ 0 and a+ b+ c = 0.

(H5) b < 0 and µT ≤ −1/b.

(H6) There exist r,R ∈ R such that r ≤ m ≤ M ≤ R, and one of the
following statements holds:

• µT = 0 and f(R, x, t) ≤ 0 ≤ f(r, x, t) for all x ∈ Z, t ∈ [t0, T ]T.

• µT > 0 and
1 + µTb

µT
(r − u) ≤ f(u, x, t) ≤ 1 + µTb

µT
(R− u) for all

u ∈ [r,R], x ∈ Z, t ∈ [t0, T ]T.

Condition (H6) defines forbidden areas that the function f(·, x, t)
cannot intersect for any x and t, similarly to [30] (see Figure 2.1).

We are now able to state the weak maximum principle for (2.1.2).

Theorem 2.1.3. Assume that (H1)–(H6) hold. If u : Z× [t0, T ]T → R
is a bounded solution of (2.1.2), then

r ≤ u(x, t) ≤ R for all x ∈ Z, t ∈ [t0, T ]T. (2.1.3)

The proof consists of two parts: First, one proves the result for
time scales having only isolated points. Second, one uses continuous
dependence of solutions on T to approximate the solution of (2.1.2) on
any time scale by solutions of (2.1.2) defined on isolated time scales.

The classical maximum principle guarantees that m ≤ u(x, t) ≤ M ,
i.e., it corresponds to the case when r = m and R = M . However, for
this choice of r and R, (H6) need not be satisfied. Choosing r < m
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Figure 2.1: Illustration of (H6). The values r,R are chosen so that
the function f(·, x, t) does not intersect the gray forbidden areas. The
slope of the boundary dashed lines is determined by the values of µT.

and R > M , we can soften (H6), and obtain the weaker estimate r ≤
u(x, t) ≤ R.

As an application of the weak maximum principle, we obtain the
following global existence theorem.

Theorem 2.1.4. If u0 ∈ ℓ∞(Z) and (H1)–(H6) hold, then (2.1.2) has
a unique bounded solution u : Z× [t0, T ]T → R.

Moreover, the solution depends continuously on u0 in the following
sense: For every ε > 0, there exists a δ > 0 such that if v0 ∈ ℓ∞(Z),
r ≤ v0x ≤ R for all x ∈ Z, and ∥u0−v0∥∞ < δ, then the unique bounded
solution v : Z × [t0, T ]T → R of (2.1.2) corresponding to the initial
condition v0 satisfies |u(x, t)− v(x, t)| < ε for all x ∈ Z, t ∈ [t0, T ]T.

To be able to state the strong maximum principle, we need the
following stronger versions of (H4)–(H6):

(H4) a, b, c ∈ R are such that a, c > 0 and a+ b+ c = 0.

(H5) b < 0 and µT < −1/b.

(H6) There exist r,R ∈ R such that r ≤ m ≤ M ≤ R, and the following
statements hold for all x ∈ Z and t ∈ [t0, T ]T:

• f(R, x, t) ≤ 0 ≤ f(r, x, t).
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• If µT > 0, then f(u, x, t) >
1 + µTb

µT
(r− u) for all u ∈ (r,R].

• If µT > 0, then f(u, x, t) <
1 + µTb

µT
(R−u) for all u ∈ [r,R).

The strong maximum principle now reads as follows. Its statement
involves the backward jump operator ρ defined by

ρ(t) = sup{s ∈ T : s < t}, t ∈ T.

Theorem 2.1.5. Assume that (H1), (H2), (H3), (H4), (H5), (H6)
hold with r = m ≤ M = R and u : Z × [t0, T ]T → R is a bounded
solution of (2.1.2). If u(x̄, t̄) ∈ {r,R} for some x̄ ∈ Z and t̄ ∈ (t0, T ]T,
then the following statements hold:

(a) If [t0, t̄]T contains only isolated points, i.e., t0 = ρk(t̄) for some
k ∈ N, then u(x, t) = u(x̄, t̄) for all (x, t) with t = ρj(t̄) for
a certain j ∈ {0, . . . , k}, and x = x̄±i for a certain i ∈ {0, . . . , j}.

(b) Otherwise, if [t0, t̄]T contains a point which is not isolated, then
u is constant on Z× [t0, T ]T.

Corollary 2.1.6. Assume that (H1), (H2), (H3), (H4), (H5), (H6)
hold with r = m ≤ M = R and u : Z × [t0, T ]T → R is a bounded
solution of (2.1.2). If there is a point td ∈ [t0, T )T that is not isolated
and if the initial condition u0 is not constant, then

r < u(x, t) < R for all x ∈ Z, t ∈ (td, T ]T.

Examples illustrating the weak and strong maximum principles are
available in [AS7].

2.2 Invariant regions for systems
of equations

Some results of the previous section can be extended to systems of the
form

∂u

∂t
(x, t) = A(x, t)u(x+1, t)+B(x, t)u(x, t)+C(x, t)u(x−1, t)+f(u(x, t), t),

(2.2.1)

where x ∈ Z, t ≥ 0, u takes values in Rm and A, B, C are matrix-valued
functions.

22



The basic well-posedness results can be obtained similarly as in the
scalar case, and we do not discuss them here. Instead, we focus on an
invariance result, which can be interpreted as a generalization of the
weak maximum principle: In the scalar case, the weak maximum prin-
ciple says that under suitable assumptions on the reaction function f ,
the values of the solution always remain in the interval determined by
the infimum and supremum of the initial values. Thus, the interval is
an invariant region for the given equation. In the higher-dimensional
setting, the interval is replaced by a closed convex set S ⊂ Rm, and
the problem is to find sufficient conditions guaranteeing that S is an
invariant region, i.e., that solutions with initial values in S never leave
this set.

We will consider compact convex sets S described as intersections
of sublevel sets of certain functions G1, . . . , Gk. More precisely, we
introduce the following condition:

(S) Assume that k ∈ N, U1, . . . , Uk ⊆ Rm are open sets, and for each
i ∈ {1, . . . , k}, Gi : Ui → R is a C1 function. Suppose also that
the closed sets Si = {u ∈ Ui; Gi(u) ≤ 0}, i ∈ {1, . . . , k}, are
convex, their intersection

S = S1∩· · ·∩Sk = {u ∈ U1∩· · ·∩Uk; G1(u) ≤ 0, . . . , Gk(u) ≤ 0}

is bounded and has nonempty interior, and that ∇Gi(u) ̸= 0 for
each i ∈ {1, . . . , k}, u ∈ ∂Si.

To avoid technical difficulties, we consider only the case when f
does not explicitly depend on x, and impose the following conditions:

(D1) f is Lipschitz-continuous in the first variable on each set B×[0, T ],
where B ⊂ Rm is bounded.

(D2) f is continuous in the second variable.

Our goal is to obtain sufficient conditions for S to be an invariant
region for bounded solutions of Eq. (2.2.1), ensuring that each bounded
solution of Eq. (2.2.1) with u(x, 0) ∈ S, x ∈ Z, satisfies u(x, t) ∈ S for
each t ∈ [0, T ], x ∈ Z. We need the following conditions:

(A1) A, B, C : Z× [0, T ] → Rm×m are bounded.

(A2) For each j ∈ {−k, . . . , k}, ε > 0 and t ∈ [0, T ], there exists a δ > 0
such that if s ∈ (t− δ, t+ δ)∩ [0, T ], then ∥A(x, t)−A(x, s)∥ < ε
for all x ∈ Z. The same condition holds for B and C.
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(C1) For all i ∈ {1, . . . , k} and u ∈ ∂Si∩S, we have ∇Gi(u)·f(u, t) ≤ 0
for all t ∈ [0, T ].

(C2) For all i ∈ {1, . . . , k}, u ∈ ∂Si ∩ S, x ∈ Z and t ∈ [0, T ], there
exist numbers a ≥ 0, b ≤ 0, c ≥ 0 such that

∇Gi(u)
⊤A(x, t) = a∇Gi(u)

⊤, ∇Gi(u)
⊤B(x, t) = b∇Gi(u)

⊤,

∇Gi(u)
⊤C(x, t) = c∇Gi(u)

⊤.

(C3) A(x, t) +B(x, t) + C(x, t) = 0 for each x ∈ Z and t ∈ [0, T ].

The assumption (C1) says that the vector field f points inside S
or is tangent to the boundary at all boundary points of S. This con-
dition is well known from the invariance results for classical parabolic
equations; see [2, 10, 27, 34, 36]. The fact that the condition (C3) is
necessary for the validity of the weak maximum principle in the scalar
case was already noticed in the previous section. Condition (C2) says
that ∇Gi(u) is a left eigenvector of the matrices A(x, t), B(x, t), C(x, t)
for each x ∈ Z and t ∈ [0, T ]. Moreover, it is required that the corre-
sponding eigenvalues a, c are nonnegative, while b is nonpositive (note
that the eigenvalues might depend on x and t). A condition of a similar
type can be found in [10, 11, 12, 35], and it is also implicitly present
in [34]. If A, B, C are not scalar multiples of the identity matrix, then
condition (C2) imposes a serious restriction on the shape of S – it says
that the boundary of S has to be such that the normal vectors ∇Gi

are left eigenvectors of A, B, C. In general, a condition of this type
cannot be avoided. The necessity of an analogous condition for systems
of parabolic differential equations was proved in [10, Theorem 4.2]. For
example, if we have a decoupled system of two linear diffusion equa-
tions with different diffusion coefficients, it can easily happen that a
solution leaves a compact convex set that has a non-rectangular shape;
a convincing pictorial argument can be found in [11, Section 3.4].

The main result of this section is as follows.

Theorem 2.2.1. Assume that conditions (S), (D1), (D2), (A1), (A2),
(C1)–(C3) are satisfied. If u : Z× [0, T ] → Rm is a bounded solution of
Eq. (2.2.1) with u(·, 0) ∈ ℓ∞(Z)m and u(x, 0) ∈ S for each x ∈ Z, then
u(x, t) ∈ S for all t ∈ [0, T ], x ∈ Z.

The proof is technical and different from existing proofs for parabolic
PDEs. The main idea is to derive an invariance result for the Euler
approximations to Eq. (2.2.1), and then pass to the continuous-time
limit.
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Chapter 3

Reaction-diffusion
equations on graphs

The present chapter is based on the papers [AS8], [AS10].

3.1 Lotka-Volterra model on graphs

In population dynamics, there exist three basic types of models de-
scribing the interaction between two species: predator-prey models,
competition models, and mutualism/symbiosis models [25, Chapter 3].
We focus on a model of the second type, where two species compete
against each other for the same resources. The basic competition model
describing this situation is the classical Lotka-Volterra model, which
can be written in the form

u′(t) = ρ1u(t)(1− u(t)− αv(t)),

v′(t) = ρ2v(t)(1− βu(t)− v(t)),
(3.1.1)

The quantities u(t), v(t) correspond to the number of individuals at
time t, the parameters ρ1, ρ2 > 0 are the intrinsic growth rates, and
α, β > 0 correspond to the strength of the competition. A detailed
analysis of this model can be found in a large number of sources devoted
to differential equations or mathematical biology, e.g. [25, Section 3.5].

One drawback of the above-mentioned model is that it does not
take into account the spatial distribution of both species. For this
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reason, various authors have considered the so-called diffusive Lotka-
Volterra model, which describes not only the competition between the
two species, but also the migration of individuals within each popu-
lation. The model is expressed as a system of two reaction-diffusion
partial differential equations, and was studied in a large number of
papers; see e.g. [6] and the references cited therein.

On the other hand, mathematical biology often deals with models
where the spatial domain consists of discrete patches, corresponding
to fragmented habitats (such as islands, ponds, etc.). Such models
might be more realistic from the biological viewpoint, and their solu-
tions often display behavior different from that of the continuous-space
models. For example, the discrete-space Lotka-Volterra competition
model that we consider here is known to have stable spatially hetero-
geneous stationary states [20], and this fact is in stark contrast to the
continuous-space model, which has no stable nonconstant stationary
states [19].

Suppose we have a finite number of discrete patches, each being
inhabited by both species. Such a domain can be described by a finite
graph G = (V,E), where V = {1, . . . , n} is the set of patches, and an
edge {i, j} ∈ E means that the species can move between patches i
and j. Our model corresponds to the system of differential equations

u′
i(t) = d1

∑
j∈N(i)

(uj(t)− ui(t)) + ρ1ui(t)(1− ui(t)− αvi(t)), i ∈ V,

v′i(t) = d2
∑

j∈N(i)

(vj(t)− vi(t)) + ρ2vi(t)(1− vi(t)− βui(t)), i ∈ V,

(3.1.2)
where d1, d2 ≥ 0 are diffusion constants (or migration rates), and
N(i) = {j ∈ V ; {i, j} ∈ E} denotes the set of all neighbors of a ver-
tex i ∈ V .

Let us begin by recalling some basic facts about the classical Lotka-
Volterra competition model (3.1.1). To avoid technical difficulties, we
restrict ourselves to the case when α ̸= 1 and β ̸= 1. Also, due to the
biological interpretation, we are interested only in nonnegative solutions
of (3.1.1). The system (3.1.1) always has at least three equilibria:

E0 = (0, 0), E1 = (1, 0), E2 = (0, 1). (3.1.3)

Moreover, if αβ ̸= 1, there is a fourth equilibrium

E3 =

(
1− α

1− αβ
,
1− β

1− αβ

)
. (3.1.4)
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β > 1

0 < β < 1

0 < α < 1 α > 1

Figure 3.1: Phase portraits of the classical Lotka-Volterra competition
system, depending on the values of α and β. The black/gray points
correspond to stable/unstable equilibria.

Taking into account our restriction to α, β ̸= 1, we see that E3 lies
in the 1st quadrant if and only if α > 1 and β > 1, or α < 1 and β < 1.
In both cases, E3 is contained in the open square (0, 1)× (0, 1).

The equilibrium E0 is always unstable. The equilibrium E1 is un-
stable for β < 1, and asymptotically stable for β > 1. Similarly, E2

is unstable for α < 1, and asymptotically stable for α > 1. Finally, if
α > 1 and β > 1, then E3 is unstable (a saddle point), while if α < 1
and β < 1, then E3 is asymptotically stable.

Except the case α, β > 1, exactly one of the three equilibrium points
E1, E2, E3 is stable. Moreover, it attracts all solutions with positive
initial values (see Figure 3.1).

We now turn our attention to the spatial competition model (3.1.2).
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From now on, we always assume that G is a connected graph (other-
wise, it is possible to treat each component separately). Using Bony’s
theorem on positively invariant regions, it is not too difficult to prove
that for nonnegative initial conditions, the system (3.1.2) has a unique
solution defined on [0,∞), which remains nonnegative for all time.

To be able to investigate the qualitative behavior of solutions, the
first task is to look for stationary states of the system (3.1.2). We begin
with equilibria having the form ui(t) = u∗ ≥ 0 and vi(t) = v∗ ≥ 0 for
all i ∈ V , t ≥ 0, which are called spatially homogeneous (as opposed
to spatially heterogeneous equilibria, where the components of u or v
need not coincide). Substituting into (3.1.2), we get

0 = ρ1u
∗(1− u∗ − αv∗),

0 = ρ2v
∗(1− v∗ − βu∗).

(3.1.5)

Hence, a pair E = (u∗, v∗) determines a homogeneous stationary state
of the system (3.1.2) if and only if E is a stationary state of the classical
Lotka-Volterra system (3.1.1), i.e., if E coincides with one of the four
equilibrium points E0, E1, E2, E3.

We will use the symbol Ei to denote the homogeneous stationary
state of the system (3.1.2) satisfying (ui(t), vi(t)) = Ei for all i ∈ V ,
t ≥ 0. Note that we use boldface to distinguish homogeneous stationary
states of (3.1.2) from stationary states of (3.1.1). Thus, Ei ∈ R2n,
while Ei ∈ R2.

The local stability of the homogeneous stationary states can be de-
termined from the Jacobian matrix using some properties of the Kro-
necker product of matrices.

Theorem 3.1.1. If α, β > 0 and α, β ̸= 1, then:

� E0 is always unstable.

� E1 is unstable if β < 1, and asymptotically stable if β > 1.

� E2 is unstable if α < 1, and asymptotically stable if α > 1.

� E3 is unstable if α > 1 and β > 1, and asymptotically stable if
α < 1 and β < 1.

The next result describes the asymptotic behavior of solutions to the
system (3.1.2) in all cases when at least one of α, β is less than 1. The
proof is based on the construction of appropriate Lyapunov functions
and application of LaSalle’s invariance principle.
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Theorem 3.1.2. Suppose that d1, d2, ρ1, ρ2 > 0.

� If 0 < α < 1 and β > 1, then each solution u, v : [0,∞) → Rn of
(3.1.2) with u(0) > 0 and v(0) ≥ 0 approaches E1 as t → ∞.

� If α > 1 and 0 < β < 1, then each solution u, v : [0,∞) → Rn of
(3.1.2) with u(0) ≥ 0 and v(0) > 0 approaches E2 as t → ∞.

� If 0 < α < 1 and 0 < β < 1, then each solution u, v : [0,∞) → Rn

of (3.1.2) with u(0) > 0 and v(0) > 0 approaches E3 as t → ∞.

In all cases except α, β > 1, Theorem 3.1.2 implies that all solutions
with positive initial values are attracted to one of the homogeneous
stationary states E1, E2, E3. In particular, there are no heterogeneous
stationary states in the positive orthant. It remains to settle the case
α, β > 1, which leads to a much more interesting dynamics. We will see
that the system (3.1.2) might possess a large number of heterogeneous
stationary states, some of which are asymptotically stable.

We will assume that ρ1, ρ2, α, β and G are fixed, and we study the
effect of diffusion on the existence of heterogeneous stationary states.
The next result shows that if the diffusion is sufficiently large, there are
no heterogeneous stationary states, and all solutions with nonnegative
initial conditions tend to a homogeneous stationary state. The proof is
somewhat lengthy, and has two parts: First, some calculations involving
the Laplacian matrix of G and its eigenvectors show that each solution
tends to a spatially homogeneous function. In the second part, one
verifies that the spatially homogenous function tends to a homogeneous
stationary state; this part involves a comparison with a solution of the
classical Lotka-Volterra system.

Theorem 3.1.3. For each ρ1, ρ2 > 0, α, β > 0, and graph G, there
exists a D ≥ 0 such that if min(d1, d2) > D, then all solutions of (3.1.2)
with nonnegative initial conditions tend to a homogeneous stationary
state. In particular, (3.1.2) has no heterogeneous stationary state with
nonnegative components.

We now proceed to the opposite case when the diffusion is small.
If d1 = d2 = 0 and ρ1, ρ2 > 0, the situation is simple: All stationary
points of the system (3.1.2) have the form

Eσ = (Eσ(1), . . . , Eσ(n)), (3.1.6)

where σ = (σ(1), . . . , σ(n)) ∈ {0, 1, 2, 3}n. If α > 1 and β > 1, then all
four points E0, E1, E2, E3 have nonnegative components, and hence
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the system (3.1.2) has 4n nonnegative stationary states; four of them
are homogeneous (namely E0, E1, E2, E3), and the remaining 4n − 4
are heterogeneous.

However, we are primarily interested in what happens if d1, d2 > 0.
It is reasonable to expect that if d1, d2 are small, the system (3.1.2)
will possess 4n stationary solutions close to Eσ, σ ∈ {0, 1, 2, 3}n; this
is the content of the next lemma, whose proof is based on the implicit
function theorem.

Lemma 3.1.4. For each ρ1, ρ2 > 0, α, β > 1 and graph G, there
exist disjoint sets U(Eσ) ⊂ R2n, σ ∈ {0, 1, 2, 3}n, an ε > 0, and
smooth functions Fσ : [0, ε]× [0, ε] → U(Eσ), σ ∈ {0, 1, 2, 3}n, with the
following properties:

� Fσ(0, 0) = Eσ for each σ ∈ {0, 1, 2, 3}n.

� If σ ∈ {0, 1, 2, 3}n and d1, d2 ∈ [0, ε], then Fσ(d1, d2) is a station-
ary state of the system (3.1.2). This state is asymptotically stable
if and only if σ ∈ {1, 2}n, and unstable otherwise.

The lemma says that if d1, d2 ≥ 0 are sufficiently small, then (3.1.2)
has 4n stationary solutions of the form

Fσ(d1, d2) = (u1(d1, d2), . . . , un(d1, d2), v1(d1, d2), . . . , vn(d1, d2)),

where σ ∈ {0, 1, 2, 3}n; four of them corresponding to σ = (i, . . . , i)
with i ∈ {0, 1, 2, 3} are homogeneous, while the remaining 4n − 4 are
heterogeneous (this follows from the fact that the neighborhoods U(Eσ)
are disjoint) and 2n − 2 of them are asymptotically stable.

The idea of using the implicit function theorem to study stationary
states of networks consisting of weakly coupled bistable units can be
found e.g. in [23]. However, in the present problem, we have to be
careful, since the heterogeneous equilibria need not be nonnegative.
If σ(i) = 3, then (ui(d1, d2), vi(d1, d2)) is close to E3, and therefore
nonnegative. On the other hand, if σ(i) ∈ {0, 1, 2}, we do not a priori
know whether ui(d1, d2) and vi(d1, d2) are nonnegative.

To settle this question, we will assume that d1 = dδ1 and d2 = dδ2,
where δ1, δ2 > 0 are fixed, and d is a variable. In other words, the
ratio of diffusion coefficients is fixed to be δ1/δ2, but their magnitudes
are allowed to vary. Then we determine which of the stationary states
Fσ(dδ1, dδ2) have nonnegative components for sufficiently small d > 0.
If σ = (i, . . . , i) for some i ∈ {0, 1, 2, 3}, then Fσ(dδ1, dδ2) = Ei. Thus,
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it suffices to consider only n-tuples σ ∈ {0, 1, 2, 3}n whose components
do not all coincide.

Theorem 3.1.5. Consider a graph G and assume that α, β > 1,
δ1, δ2 > 0, and Fσ : [0, ε] × [0, ε] → U(Eσ), σ ∈ {0, 1, 2, 3}n, are as
in Lemma 3.1.4. There exists a ∆ > 0 with the following properties:

� Suppose that σ ∈ {0, 1, 2, 3}n, σ ̸= (0, . . . , 0), and there exists an
i ∈ V with σ(i) = 0. Then at least one component of Fσ(dδ1, dδ2)
is negative for all d ∈ (0,∆].

� Suppose that σ ∈ {1, 2, 3}n and not all components of σ coincide.
Then for each d ∈ (0,∆], Fσ(dδ1, dδ2) is a heterogeneous station-
ary state of (3.1.2), where d1 = dδ1 and d2 = dδ2, with positive
components.

We see that if α, β > 1, d1 = dδ1, d2 = dδ2, and d ≥ 0 is sufficiently
small, then (3.1.2) has 3n − 3 heterogeneous stationary states with
nonnegative components. Moreover, Lemma 3.1.4 implies that 2n − 2
of them are asymptotically stable. The biological interpretation is as
follows: For each of the n patches, we can choose among the following
three possible scenarios:

1. The patch will be dominated by species 1; species 2 will survive,
but its population will be negligible.

2. The patch will be dominated by species 2; species 1 will survive,
but its population will be negligible.

3. Both species will coexist in the given patch.

For each of the 3n choices, it is possible to find a corresponding sta-
tionary state of (3.1.2), provided that d1 and d2 are sufficiently small.
Moreover, this state will be stable if and only if we restrict our choices
to the first two possibilities.

As a simple illustration, we consider a graph with two vertices con-
nected by an edge. We take ρ1 = ρ2 = 1, α = β = 2, and δ1 = δ2 = 1,
i.e., d1 = d2 = d.

If d = 0, there are two stable heterogeneous equilibria (E1, E2) =
(1, 0, 0, 1) and (E2, E1) = (0, 1, 1, 0). Figure 3.2 shows a numerically
calculated solution of (3.1.2) approaching the latter stationary state.
The initial conditions are u1(0) = 0.1, v1(0) = 0.7, u2(0) = 0.9, v2(0) =
0.3. We see that species 1 becomes extinct at vertex 1, and species 2
becomes extinct at vertex 2.
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Vertex 1 Vertex 2
1.0

0.8

0.6

0.4

0.2

v1(t)

u1(t)

1.0

0.8

0.6

0.4

0.2

u2(t)

v2(t)

Figure 3.2: Numerical solution of the Lotka-Volterra model (3.1.2) on a
graph with 2 vertices and 1 edge. Diffusion coefficients are d1 = d2 = 0.

If d is small and positive, Theorem 3.1.5 predicts the existence of
stable heterogeneous stationary states with positive components close
to (E1, E2) = (1, 0, 0, 1) and (E2, E1) = (0, 1, 1, 0). For example, if d =
0.05, a numerical calculation finds stable equilibrium points approxi-
mately at (u1, v1, u2, v2) = (0.85, 0.05, 0.05, 0.85) and (u1, v1, u2, v2) =
(0.05, 0.85, 0.85, 0.05). Figure 3.3 shows a numerically calculated so-
lution of (3.1.2) approaching the latter stationary state. We see that
species 2 dominates at vertex 1, while species 1 dominates at vertex 2.
However, no species becomes extinct: In each vertex, the tendency of
the weaker population to extinction is compensated by diffusion from
the other vertex.

Vertex 1 Vertex 2
1.0

0.8

0.6

0.4

0.2

v1(t)

u1(t)

1.0

0.8

0.6

0.4

0.2

u2(t)

v2(t)

Figure 3.3: Numerical solution of the same Lotka-Volterra model as in
Figure 3.2, but with diffusion coefficients increased to d1 = d2 = 0.05.

If we increase the diffusion to d = 0.2, numerical calculation finds
no heterogeneous stationary states with nonnegative components. Fig-
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v2(t)
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Figure 3.4: Numerical solution of the same Lotka-Volterra model as in
Figure 3.3, but with diffusion coefficients increased to d1 = d2 = 0.2.

ure 3.4 shows the solution with the same initial conditions as be-
fore. The solution now approaches the homogeneous stationary state
E2 = (0, 1, 0, 1), in which species 2 wins the competition at both ver-
tices, and species 1 is driven to extinction.

3.2 Nonnegative heterogeneous equilibria
of reaction-diffusion systems on graphs

In the present section, we provide a closer look on the existence of non-
negative heterogeneous stationary states. We do not restrict ourselves
to specific reaction functions, but consider a general class of reaction-
diffusion systems, which are obtained as follows. First, consider a dy-
namical system governed by the system of differential equations

(xk)
′(t) = hk(x1(t), . . . , xN (t)), k ∈ {1, . . . , N}. (3.2.1)

Suppose that Σ = {S1, . . . , Ss} ⊂ RN is a finite set of stationary states
of this system. Next, we take an arbitrary undirected graph G with ver-
tex set V (G) = {1, . . . , n} and edge set E(G) (consisting of unordered
pairs of vertices). The local dynamics inside each vertex will be driven
by the above-mentioned N -dimensional dynamical system. Moreover,
we suppose that these n systems are coupled via diffusion along the
edges of G. If {i, j} ∈ E(G), let dijk = djik ≥ 0 be the intensity of
diffusion for the k-th component of x between vertices i and j. In this
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way, we obtain the system of n ·N reaction-diffusion equations

(xi
k)

′(t) =
∑

j∈N (i)

dijk (x
j
k(t)− xi

k(t)) + hk(x
i
1(t), . . . , x

i
N (t)), (3.2.2)

where i ∈ V (G), k ∈ {1, . . . , N}, and N (i) = {j ∈ V (G); {i, j} ∈
E(G)} denotes the set of all neighbors of a vertex i ∈ V (G).

The system (3.2.2) has s stationary states in which no diffusion takes
place, and (xi

1(t), . . . , x
i
N (t)) = S for a certain S ∈ Σ and all i ∈ V (G),

t ≥ 0; such stationary states are called spatially homogeneous. The
system might also possess other stationary states, which are called spa-
tially heterogeneous. To see this, we follow the idea from the previous
section: First, if dijk = 0 for all i, j, k, we have n decoupled systems. For
each i ∈ V (G), we might choose an arbitrary σ(i) ∈ {1, . . . , s}, and let
(xi

1(t), . . . , x
i
N (t)) = Sσ(i) for all t ≥ 0. If σ(1), . . . , σ(n) do not all coin-

cide, we obtain a heterogeneous stationary state Sσ = (Sσ(1), . . . , Sσ(n))
of (3.2.2). Now, if h1, . . . , hN are smooth, and the Jacobian matrix Jh
of h = (h1, . . . , hN ) is invertible at each of the points Sσ(1), . . . , Sσ(n),

then the implicit function theorem guarantees that if dijk are small, then
(3.2.2) still possesses a heterogeneous stationary state close to Sσ.

In some applications, for example in population dynamics, the only
meaningful stationary states of (3.2.2) are those with nonnegative com-
ponents. Note that the stationary states obtained using the implicit
function theorem by continuation from Sσ depend continuously on the
diffusion coefficients. Hence, if Sσ has strictly positive components,
then the stationary state obtained by continuation from Sσ will be also
positive, at least for sufficiently small dijk . On the other hand, if at
least one component of Sσ is strictly negative, it will remain negative
for small dijk . Hence, the only nontrivial case occurs if all components of
Sσ are nonnegative, and at least one of them is zero. In such case, fur-
ther analysis is needed to find out whether the corresponding stationary
states obtained by continuation from Sσ have nonnegative components.

Our goal is to provide a criterion for checking whether the hetero-
geneous stationary states obtained by continuation from Sσ with at
least one zero component remain nonnegative if the diffusion coeffi-
cients are small. To simplify the calculation, we will assume that the
diffusion coefficients in (3.2.2) have the form dijk = dδijk for all i, j, k,

where δijk > 0 are fixed, and d ≥ 0 is a variable. This means that
the ratio of the diffusion coefficients is fixed, but their magnitudes are
allowed to vary. Although this assumption might seem too restrictive,
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the setting suffices for determining the existence/nonexistence of het-
erogeneous stationary states with nonnegative components.

Recall that Σ = {S1, . . . , Ss} ⊂ RN is a finite set of (not necessarily
all) equilibrium points of the system (3.2.1) such that the Jacobian
matrix Jh of h = (h1, . . . , hN ) is invertible at each S ∈ Σ. For each
choice Sσ = (Sσ(1), . . . , Sσ(n)) ∈ Σn, the implicit function theorem
yields the existence of an ε > 0 and continuously differentiable functions
ui
k : [0, ε] → R, i ∈ V (G), k ∈ {1, . . . , N}, such that∑
j∈N (i)

dδijk (ui
k(d)− uj

k(d)) = hk(u
i
1(d), . . . , u

i
N (d)), d ∈ [0, ε], (3.2.3)

where (ui
1(0), . . . , u

i
N (0)) = Sσ(i) for all i ∈ V (G). Hence, the values

ui
k(d) determine an equilibrium state of (3.2.2) with dijk = dδijk obtained

by continuation from Sσ. We keep in mind that the functions ui
k depend

on the choice of Sσ, although we do not write this dependence explicitly.
In the following main result, we assume that G is a connected undi-

rected graph; otherwise, one can examine each connected component
separately. The symbol diam G denotes the diameter of a graph G,
i.e., the maximum distance between two vertices in G.

Theorem 3.2.1. Suppose that Sσ ∈ Σn has nonnegative components,
each of h1, . . . , hN is real analytic at the points Sσ(1), . . . , Sσ(n), and if
k ∈ {1, . . . , N} and i ∈ V (G) are such that ui

k(0) = 0, then

∂qhk

∂xm1
· · · ∂xmq

(ui
1(0), . . . , u

i
N (0)) = 0

for all q ∈ {1, . . . ,diam G} and m1, . . . ,mq ∈ {1, . . . , N} \ {k}. Then
the continuation of Sσ is nonnegative for all sufficiently small d > 0 if
and only if for each k ∈ {1, . . . , N} and i ∈ V (G) for which ui

k(0) = 0,

either uj
k(0) = 0 for all j ∈ V (G), or ∂hk

∂xk
(ui

1(0), . . . , u
i
N (0)) < 0.

The idea of the proof is as follows: To decide whether the con-
tinuation of Sσ has nonnegative components, we examine all vertices
i ∈ V (G). For each zero component of Sσ(i), we determine the sign of
the first nonvanishing derivative (with respect to the strength of the
diffusion). The assumptions on the right-hand sides h1, . . . , hN make
this possible without having to calculate the inverse Jacobian matrix.

Under the assumptions of Theorem 3.2.1, we see that the fact
whether the continuation of Sσ is nonnegative depends only on the
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set {σ(i) : i ∈ V (G)}, and not on the distribution of the values
σ(1), . . . , σ(n) among the vertices. This leads us to the following con-
cept of an admissible set – a set of equilibria of (3.2.1) that can be
combined together in an arbitrary way in order to get a nonnegative
stationary state of the spatial system (3.2.2) for small d ≥ 0.

Definition 3.2.2. If Σ = {S1, . . . , Ss} ⊂ RN is a finite set of stationary
states of the system (3.2.1), we say that A ⊂ Σ is an admissible set for
(3.2.2) if it has the following property: If Sσ(1), . . . , Sσ(n) ∈ A, then the
continuation of Sσ = (Sσ(1), . . . , Sσ(n)) is nonnegative for small d ≥ 0.

We say that an admissible set A is maximal if it is not contained in
any larger admissible set.

Note that each admissible set contains only nonnegative states Si,
and each nonnegative state Si gives rise to the singleton admissible set
A = {Si}, but it need not be maximal.

It follows from Theorem 3.2.1 that the problem of determining all
choices σ(1), . . . , σ(n) ∈ {1, . . . , s} such that the continuation of Sσ =
(Sσ(1), . . . , Sσ(n)) is nonnegative can be solved by finding all maximal
admissible sets for (3.2.2). In particular, all Sσ(1), . . . , Sσ(n) have to be
elements of a certain maximal admissible set.

The next result provides a formula for the number of nonnegative
heterogeneous stationary states; the symbol |X| stands for the number
of elements of a set X.

Theorem 3.2.3. Suppose that A1, . . . , Ar is the collection of all
distinct maximal admissible sets for the system (3.2.2). Assume that
|Ai∩Aj | ≤ 1 whenever i ̸= j. Then, if dijk = dδijk for all i, j, k, the sys-
tem (3.2.2) has at least

∑r
i=1(|Ai|n − |Ai|) nonnegative heterogeneous

stationary states for all sufficiently small d ≥ 0.

We illustrate our results on the simplest possible example: When
N = 1, the system (3.2.1) reduces to the single equation x′(t) = h(x(t)),
and (3.2.2) becomes

(xi)′(t) =
∑

j∈N (i)

dij(xj(t)− xi(t)) + h(xi(t)), i ∈ V (G). (3.2.4)

Suppose that h : R → R has the zero equilibrium and several positive
equilibria, i.e., Σ = {S1, S2, . . . , Ss} with 0 = S1 < S2 < · · · < Ss. To
be able to apply Theorem 3.2.1, we assume that dij = dδij and that
for each x ∈ Σ, h is real analytic at x and h′(x) ̸= 0.
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An arbitrary Sσ = (Sσ(1), . . . , Sσ(n)) ∈ Σn is a stationary state for
(3.2.4) with dij = 0. Clearly, if Sσ(i) ̸= 0 for all i ∈ V (G), then the
continuation of Sσ is nonnegative for small d > 0. If Sσ(i) = 0 for
some i ∈ V (G), Theorem 3.2.1 implies that the continuation of Sσ

is nonnegative for small d > 0 if and only if either Sσ(j) = 0 for all
j ∈ V (G), or h′(0) < 0. In other words, if h′(0) < 0, then the unique
maximal admissible set for (3.2.4) is Σ and we get sn − s nonnegative
heterogeneous stationary states, while if h′(0) > 0, then the maxi-
mal admissible sets are A1 = {0} and A2 = {S2, . . . , Ss}, and we get
(s− 1)n − (s− 1) nonnegative heterogeneous stationary states.

For example, if h(x) = ρx(x−a)(b−x), where 0 < a < b, then (3.2.4)
is the Nagumo equation considered in [29]. We have Σ = {0, a, b},
h′(a) = ρa(b − a) ̸= 0, h′(b) = ρb(a − b) ̸= 0 and h′(0) = −ρab < 0.
Hence, the unique maximal admissible set is Σ, and we get 3n − 3
nonnegative heterogenenous stationary states for dij = dδij and small
d > 0, as proved in [29].

Another possible choice is the logistic nonlinearity h(x) = ρx(a−x),
where a > 0. Then Σ = {0, a}, h′(a) = −ρa ̸= 0, and h′(0) = ρa > 0.
Hence, the maximal admissible sets are A1 = {0}, A2 = {a}, which
lead only to homogeneous stationary states.

More complicated examples (Lotka-Volterra models with two or
three species, a competition model for two species with an Allee ef-
fect, and the Gause predator-prey model) can be found in [AS10].
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