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Summary
Quadratic forms and number fields are one of the most classical and
important areas of number theory, as well as of mathematics as a
whole. Their study dates back to ancient Babylon, India, and Greece,
followed by significant results by giants such as Fermat, Euler, and
Gauss, all the way to the modern works of Fields medallists Bhargava
(2014), Venkatesh (2018), and Viazovska (2022).

This thesis presents a number of new results in the area, all of
which build on or are motivated by the role of small elements in the
arithmetic of totally real extensions of the rationals. In particular,
we focus on their applications to universal quadratic forms and class
numbers.

A quadratic form over a totally real field K is universal if it
is totally positive definite and represents all the totally positive
algebraic integers. The best-known example is the sum of four squares
x2 + y2 + z2 + w2 that represents all the positive rational integers, i.e.,
is universal over K = Q. In this case, Bhargava–Hanke classified all
the universal forms in the course of the proof of their 290-Theorem;
we sketch the ideas behind the argument in Section I.1.

Then we turn our attention to the case of general totally real
number fields K. After brief preliminaries (Section I.2), in Section I.3
we discuss why universal forms exist over every K and what is known
about forms of small rank.

Section I.4 addresses the first non-trivial case of real quadratic
fields K = Q(

√
D). We explain the influence of certain small, inde-

composable, elements of K on ranks of universal forms, and how
these elements are determined by the continued fraction of

√
D. This

leads to Theorem 7 of Kala–Yatsyna–Żmija that for almost all D, the
minimal ranks of universal forms grow with D.

Section I.5 returns to the case of higher degree number fields and
discusses methods for studying indecomposables and universal forms
over them. Section I.6 describes the work of Kala–Tinková on the
simplest cubic fields that builds on these tools together with the study
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of small lattice points in the positive octant of the Minkowski space.
The consideration of the simplest cubic fields is partly motivated
by continued fraction families of real quadratic fields, discussed in
Section I.7, that were the key for the construction of consecutive real
quadratic fields with very large class numbers by Cherubini–Fazzari–
Granville–Kala–Yatsyna.

Section I.8 focuses on another influential problem in the area, the
lifting problem concerning the universality of quadratic forms whose
coefficients are restricted to lie in Q or other fixed number field. In
Section I.9, we further consider the existence of universal forms over
fields K of infinite degree over Q. In them, the behavior of small
elements is captured by the Northcott property, which was related to
universal forms by Daans–Kala–Man.

Finally, Section I.10 concludes the thesis by connecting the indi-
vidual articles comprising its second part to the preceding discussion.
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I. Overview
This thesis concerns the arithmetic of totally real number fields. The
common general theme of my research has been that algebraic integers
that are small in a suitable sense have a surprisingly large influence on
the behavior of important objects such as universal quadratic forms
and class numbers – and can be used to control and estimate their
properties.

In this Overview, we will explain and motivate the basic objects of
study, with a focus towards outlining the main results and unifying
themes in the ten published articles that form the second part of the
thesis:

[1] V. Kala and P. Yatsyna. Sums of squares in S-integers. New
York J. Math., 26:1145–1154, 2020.

[2] V. Kala and P. Yatsyna. Lifting problem for universal quadratic
forms. Adv. Math., 377:107497, 2021.

[3] T. Hejda and V. Kala. Ternary quadratic forms representing a
given arithmetic progression. J. Number Theory, 234:140–152,
2022.

[4] V. Kala and M. Tinková. Universal quadratic forms, small norms
and traces in families of number fields. Int. Math. Res. Not.
IMRN, 2023(9):7541–7577, 2023.

[5] V. Kala. Number fields without universal quadratic forms of
small rank exist in most degrees. Math. Proc. Cambridge Philos.
Soc., 174:225–231, 2023.

[6] V. Kala and P. Yatsyna. On Kitaoka’s conjecture and lifting
problem for universal quadratic forms. Bull. Lond. Math. Soc.,
55:854–864, 2023.

[7] G. Cherubini, A. Fazzari, A. Granville, V. Kala, and P. Yatsyna.
Consecutive real quadratic fields with large class numbers. Int.
Math. Res. Not. IMRN, (14):12052–12063, 2023.
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[8] V. Kala and P. Miska. On continued fraction partial quotients
of square roots of primes. J. Number Theory, 253:215–234, 2023.

[9] V. Kala and M. Melistas. Universal quadratic forms and
Dedekind zeta functions. Int. J. Number Theory, 20:1833–1847,
2024.

[10] N. Daans, V. Kala, and S. H. Man. Universal quadratic forms
and Northcott property of infinite number fields. J. Lond. Math.
Soc., 110:e70022, 2024.

A large part of this Overview is based on my survey paper [Kal23,
Sections 2, 5–8]; smaller parts are taken from my other papers and
grant proposals without mentioning this later in the text.

I.1 The 15- and 290-Theorems
A significant portion of my work focuses on universal quadratic forms.
In the basic case of the rational integers Z, these are positive definite
quadratic forms that represent all positive integers. The motivation
for their study comes from famous results such as Lagrange’s four
square theorem (x2 + y2 + z2 + w2 is universal), classification works of
Ramanujan, Dickson, and Willerding on quaternary universal forms,
and Bhargava–Hanke 290-Theorem (if a quadratic form represents
1, 2, 3, . . . , 290, then it is universal). Let us start here with a gentle
introduction to the basic concepts over the ring of integers Z with a view
towards the 290-Theorem, that should be hopefully understandable
also by non-experts.

Recall that a quadratic form of rank r (or an r-ary quadratic form)
over Z is a polynomial

Q(x1, . . . , xr) =
∑

1≤i≤j≤r

aijxixj , aij ∈ Z. (1)

Typically we require the form to be positive definite, meaning that
Q(v) > 0 for all v ∈ Zr, v ̸= 0.
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We attach the Gram matrix to Q, given by

M = MQ =


a11

1
2a12 · · · 1

2a1r
1
2a12 a22 · · · 1

2a2r
...

... . . . ...
1
2a1r

1
2a2r · · · arr

 . (2)

Taking v ∈ Zr to be a column vector (x1, . . . , xr)t we have

Q(v) = vtMv.

The quadratic form Q is called classical if all the entries of M are
integers, i.e., if aij are even for all i ̸= j.

Each quadratic form has an associated bilinear form B defined by

Q(v + w) = Q(v) + Q(w) + 2B(v, w), v, w ∈ Zr.

A positive definite form satisfies the Cauchy–Schwarz inequality:
For all v and w,

Q(v)Q(w) ≥ B(v, w)2.

In the 90’s, Conway, Miller, Schneeberger, and Simons, and then
Bhargava and Hanke [Bha99, BH11] came up with the following
fascinating criteria for universality.

Theorem 1. Let Q be a positive definite quadratic form over Z. Then:

(a) (15-Theorem, Conway–Schneeberger, ∼ 1995) If Q is classical and
represents the integers

1, 2, 3, 5, 6, 7, 10, 14, and 15,

then it is universal.

(b) (290-Theorem, Bhargava–Hanke, ∼ 2005 [BH11]) If Q represents
the integers

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26,

29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290,

then it is universal.
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(c) Both of these lists of integers are minimal in the sense that for
each integer n in the list, there exists a corresponding quadratic
form that represents all of Z>0 \ {n}, but does not represent n.

While the 15-Theorem in part (a) is not too hard to prove, the
290-Theorem in part (b) is very challenging, not only because of the
large amount of computations needed.

There have been a number of further exciting developments related
to universal quadratic forms over Z. For example, the conjectural
451-Theorem by Rouse [Rou14] says that if a positive definite form
represents the integers 1, 3, 5, . . . , 451, then it represents all odd positive
integers. This result has been proved only under the assumption that
each of the ternary forms x2 + 2y2 + 5z2 + xz, x2 + 3y2 + 6z2 + xy +
2yz, x2 + 3y2 + 7z2 + xy + xz represents all odd positive integers (that
seems very hard to establish).

Escalations

We give a sketch of Bhargava’s proof of the 15-Theorem. The idea
is to “build up” a universal quadratic form Q by gradually adding
variables.

In order for Q to be universal, it must represent 1, and so it must
contain x2. Slightly more precisely, a linear change of variables does
not change universality and gives us x2 (this will be made more precise
soon, once we discuss quadratic lattices).

Now x2 is clearly not universal as it does not represent 2, hence Q
must contain 2y2 (again after a change of variables). We get the form
x2 + 2axy + 2y2, where the coefficient of xy is 2a because we require
the form to be classical, and so the corresponding Gram matrix is(

1 a
a 2

)
.

What are the possible values for a? By the Cauchy–Schwarz
inequality 1 · 2 ≥ a2, which leaves the possibilities a = 0, 1, −1 with
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the corresponding Gram matrices(
1 0
0 2

)
,

(
1 1
1 2

)
,

(
1 −1

−1 2

)
.

The quadratic forms x2+2xy+2y2 and x2−2xy+2y2 are equivalent
by the change of variables y 7→ −y so we can forget about the third
matrix. As for the second matrix, we can reduce the quadratic form
by changing variables:

x2 + 2xy + 2y2 = (x + y)2 + y2 = X2 + Y 2.

Note that, in terms of matrices, the Gram matrix of the resulting
form is CtMC for an invertible matrix C. It can be obtained from M
by successively applying the same row and column operations:(

1 1
1 2

)
∼
(

1 0
1 1

)
∼
(

1 0
0 1

)
.

We see that after two steps of escalations (i.e., of systematically
expanding the form by introducing additional variables), we have two
candidate forms x2 + 2y2 and x2 + y2. Since they do not represent 5,
respectively 3, we pass to the matrices 1 0 b1

0 2 c1
b1 c1 5

 ,

 1 0 b2
0 1 c2
b2 c2 3

 .

We again determine all possible values for the coefficients and
reduce the forms, which leads to the following possibilities (this can
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be done as an exercise by the reader):1
1

d1

 , d1 = 1, 2, 3

1
2

d2

 , d2 = 2, 3, 4, 5

1
2 1
1 d3

 , d3 = 4, 5.

Continuing this process for rank 4, we get 207 forms, 201 of which
are universal. This can be proved by local methods and genus theory
(i.e., by a suitable use of the local-global principle). The remaining 6
forms represent all but one integers. After adding one more variable,
we get 1630 universal forms of rank 5.

This procedure showed that if Q is universal, then it contains one of
the rank 4 or 5 forms obtained above (here we are being quite imprecise
as to what “contains” means; in the language of lattices introduced
below it will mean the existence of a corresponding sublattice). These
are all universal, and so the converse implication also holds, i.e., any
quadratic form that contains one of these forms is universal.

But in the process of escalations, we only considered representations
of small integers:

rank
1 1
2 1, 2
3 1, 2, 3, 5
4 & 5 1, 2, 3, . . . , 15

Thus if Q represents the integers 1, 2, 3, . . . , 15, then it is universal,
proving the 15-Theorem.
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Proof of 290-Theorem

The proof of the 290-Theorem, although similar, is much more compli-
cated. First, there are more cases to be considered (we have to continue
the escalations up to rank 7, which leaves us with approximately 20 000
cases). Second, proving universality is sometimes very non-trivial and
uses tools such as theta series (modular forms). For more information,
see the original papers [Bha99, BH11] or the surveys [Hah08, Moo].

I.2 Background definitions
Let us now turn to the main topics of the thesis, for which we need to
collect the following background information.

Let K be a totally real number field of degree d with d distinct real
embeddings σ1 = id, . . . , σd : K ↪→ R. The ring of algebraic integers
of K is OK . The norm and trace of an element α ∈ K are then
N(α) = σ1(α) · · · σd(α) and Tr(α) = σ1(α) + · · · + σd(α).

For two elements α, β ∈ K we define α ≻ β if σi(α) > σi(β) for all
i. We say that α is totally positive if α ≻ 0; the set of totally positive
integers in K is denoted O+

K .
Finally, an important notion in our study of universal forms and

lattices is indecomposability: A totally positive integer α ∈ O+
K is

indecomposable if it cannot be decomposed as a sum α = β + γ of two
totally positive integers β, γ ∈ O+

K . For example, totally positive units
(as well as other elements of small norm) are always indecomposable.

In order to carry out arguments such as the one concerning the
escalations more easily, it is convenient to work with quadratic lattices
as a slight generalization of quadratic forms.

Let (L, Q) be a quadratic OK-lattice, i.e., L is a finitely generated
torsion-free OK-module equipped with a quadratic map Q : L → OK .
Note that to a quadratic form q of rank r corresponds the free quadratic
lattice (Or

K , q). When q is a diagonal quadratic form q(x1, . . . , xr) =∑r
i=1 aix

2
i , then we denote it (as well as the corresponding free lattice)

by ⟨a1, . . . , ar⟩.
We will always assume that L is totally positive definite and integral
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in the sense that Q(v) ∈ O+
K for all v ∈ L, v ̸= 0. Further, L is classical

if all the values of the associated bilinear form lie in OK . L is universal
over K if it represents over OK all totally positive algebraic integers
α ∈ O+

K .

Given functions f, g whose values are positive real numbers, we
write f ≪ g (or g ≫ f) if there is a constant c > 0 such that
f(x) < cg(x) for all x in the domain of the functions. We write
f ≪P g (or g ≫P f) to stress that the constant c may depend on the
parameter(s) P .

For any undefined notions, see [Kal23] or [O’M73].

I.3 Existence of universal forms
Let us now turn our attention more generally to the questions of
existence of universal forms and of their properties, such as possible
ranks. (Our discussion always applies to quadratic lattices, even when
we talk about quadratic forms for simplicity.)

The most natural candidate for a universal form would be the
sum of squares. Unfortunately, it is almost never universal, for Siegel
[Sie45] showed that a sum of squares is universal over OK only for

• K = Q (when 4 squares suffice) and

• K = Q(
√

5) (when 3 squares suffice [Maa41]).

The proof considers representations of units and indecomposables.
One thus has to consider more general quadratic forms and aim at

various classification results. This has been the most successful in the
quadratic case.

Theorem 2 ([CKR96, Theorem 1.1]). If K = Q(
√

D) has a ternary
classical universal form (and D is squarefree), then D = 2, 3, or 5. In
total, there are 11 such forms; examples in the three cases are

• x2 + y2 + (2 +
√

2)z2 for D = 2,

• x2 + y2 + (2 +
√

3)z2 for D = 3,
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• x2 + y2 + 5+
√

5
2 z2 for D = 5.

The best available result in this direction is:

Theorem 3 ([KKP22, Theorem 3.2]). If K = Q(
√

D) has a universal
lattice of rank ≤ 7 (and D is squarefree), then

D < (576283867731072000000005)2.

This result builds on [Kim99]; in fact, Kim–Kim–Park [KKP22]
give more precise results, also separately for classical lattices. The proof
is based on considering the sublattice representing 1, 2, . . . , 290 (it
must have rank at least 4 when D is large thanks to the 290-Theorem),
and the sublattice representing ⌈1 ·

√
D⌉ + 1 ·

√
D, ⌈2 ·

√
D⌉ + 2 ·√

D, . . . , ⌈290 ·
√

D⌉ + 290 ·
√

D (that also must have rank ≥ 4).
Note that there is an 8-ary universal form over each Q(

√
n2 − 1)

(when n2 − 1 is squarefree) [Kim00] that can be explicitly constructed.
Such results on determining the small possible ranks of universal

lattices are motivated by Kitaoka’s conjecture.

Conjecture 4 (Kitaoka). There are only finitely many totally real
number fields K having a ternary universal form.

The conjecture still remains open. However, B. M. Kim and Kala–
Yatsyna [6] proved at least a weak version of the conjecture saying
that when the degree d of K is fixed, then there are only finitely many
such fields K.

Some further interesting results are [ČLS+19, Deu08, Deu09, Lee08,
KTZ20, Sas09].

Despite these results limiting the ranks of universal forms, one can
observe that they exist over every totally real number field. There are
at least two ways of proving this:

a) Proceed by a direct construction generalizing [Kim00] (see
Corollary 9 below).

b) Hsia–Kitaoka–Kneser [HKK78, Theorem 3] showed a local-
global principle for representations of elements with sufficiently large
norm by Q, provided that the rank of Q is at least 5. So one can:
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Find a form Q0 that represents everything locally over all the
finite places. For example, Q0 = ⟨1, 1, 1, α⟩ where α ≻ 0 has additive
valuation 1 at each dyadic place works, for already ⟨1, 1, 1⟩ is locally
universal at all non-dyadic places [O’M73, 92:1b], and at the dyadic
places, one can use Beli’s theorem [Bel22, Theorem 2.1]. Alternatively,
one can use Riehm’s (much older) theorem [Rie64, Theorem 7.4]
thanks to which it suffices to make sure that all classes mod 2 are
represented – which is easily arranged by adding extra variables.

If necessary, add variables to Q0 to obtain Q of rank ≥ 5, for which
one can use the asymptotic local-global principle [HKK78, Theorem
3]. Finally, add extra variables to cover the (finitely many) square
classes of elements of small norms that are not represented by Q.

It is easy to see that there is never a universal form of rank r = 1
or 2 (for local reasons). Moreover, when the degree d of K is odd, it
quickly follows from Hilbert’s reciprocity law that there is no ternary
universal form [EK97, Lemma 3].

I.4 Lower bounds on ranks via continued
fractions

Surprisingly, it turns out that universal lattices can require arbitrarily
large ranks.

Theorem 5 ([BK15, Theorem 1], [Kal16, Theorem 1.1]). For any
positive integer r, there are infinitely many real quadratic fields Q(

√
D)

that do not have a universal lattice of rank ≤ r.

The broad idea behind the proof is the following. In a universal
lattice (L, Q), construct a sublattice that must have rank ≥ r, for
example by arranging it to contain pairwise orthogonal vectors vi

representing suitable elements βi.
We need some notation to explain more details. Let us consider a

real quadratic field K = Q(
√

D) with squarefree D > 1. For simplicity,
let us assume D ≡ 2, 3 (mod 4) so that OK = Z[

√
D] (but everything

that we discuss here also generalizes to the case D ≡ 1 (mod 4)).
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There are two embeddings K ↪→ R, the identity and

α = a + b
√

D 7→ α′ = a − b
√

D.

Thus α is totally positive if and only if a + b
√

D > 0 and a − b
√

D > 0.
The norm of α is N(α) = αα′ = a2 − b2D, and its trace is Tr(α) =
α + α′ = 2a.

The fundamental unit of a real quadratic field is given in terms of
the continued fraction of

√
D, which is periodic

√
D = [u0, u1, . . . , us]

= [u0, u1, . . . , us, u1, . . . , us, u1, . . . ] = u0 + 1
u1 + 1

u2+···
,

and we know that u0 = ⌊
√

D⌋ and us = 2⌊
√

D⌋.
Let

pi

qi
= [u0, . . . , ui]

be the convergents of the continued fraction. By an abuse of ter-
minology, the quadratic integers αi = pi + qi

√
D will also be called

convergents. The element αs−1 is the fundamental unit. In other words,
it generates the group of units, which can be described as

O×
K =

{
±αk

s−1 | k ∈ Z
}

.

Dress–Scharlau [DS82, Theorems 2 and 3] determined all the
indecomposables in Q(

√
D) in terms of the convergents as follows:

The indecomposables α are precisely the semiconvergents, i.e., elements
of the form

α = αi,t = αi + tαi+1, i ≥ −1 odd, 0 ≤ t < ui+2,

and their conjugates.
Note that αi,ui+2 = αi +ui+2αi+1 = αi+2, so indecomposables with

a fixed i form an arithmetic progression going from αi to αi+2.
Now we can discuss a more precise result in the direction of

Theorem 5 was obtained by Kala–Tinková [4], with inspiration by
earlier results of Yatsyna [Yat19].
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Theorem 6 ([4, Sections 7.1 and 7.3]). Let
√

D = [u0, u1, . . . , us] and

U =
{

max(u1, u3, . . . , us−1), if s is even,√
D, if s is odd.

Let Q be a universal quadratic form over Q(
√

D) of rank r.

a) If Q is classical, then r ≥ U/2.

b) In general, r ≥
√

U/2 (assuming U ≥ 240).

To prove the theorem, we want to use minimal vectors in a quadratic
lattice (L, Q), i.e., nonzero vectors v such that Q(v) is minimal (in
some suitable sense). This approach works best over Z, so we need to
obtain a Z-lattice. In general, if [K : Q] = d and L is an OK-lattice
of rank r, then L can be naturally viewed as a Z-lattice of rank rd.
Indeed,

L = OKv1 + · · · + OKvr−1 + Avr

for some fractional ideal A. Now OK and A are isomorphic to Zd as
Z-modules and hence we can identify L ≃ Zdr as a Z-module.

We will consider the quadratic form Tr(δQ) for a suitable δ. We
choose δ to satisfy that

• δ is a totally positive element (for then Tr(δQ) is positive definite),
and

• Tr(δQ(v)) ∈ Z for any v ∈ L.

This naturally leads us to looking at the codifferent

O∨
K = {δ ∈ K | ∀α ∈ OK : Tr(δα) ∈ Z}.

We next make the following observation: Let α ∈ O+
K . If there

exists δ ∈ O∨,+
K such that Tr(δα) = 1, then α is indecomposable. For

if α = β + γ for β, γ ∈ O+
K , then

1 = Tr(δα) = Tr(δβ) + Tr(δγ) ≥ 2.

Now we have what we need to prove Theorem 6.
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Sketch of proof of Theorem 6.
Step 1. Let U = ui+2 for some odd i and consider the indecom-

posables αi,t, 0 ≤ t < U . We define δ = − 1
2
√

D
α′

i+1. It can be checked
directly that δ ∈ O∨

K and δ is totally positive. Next we compute the
trace of

δαi,t = − 1
2
√

D
(pi+1 − qi+1

√
D) · (pi + qi

√
D) − t

√
D

2D
α′

i+1αi+1.

Since α′
i+1αi+1 = N(αi+1) ∈ Z, we have

Tr(δαi,t) = piqi+1 − pi+1qi = (−1)i+1 = 1.

Step 2. Take a quadratic OK-lattice (L, Q) representing all the
indecomposables αi,t, 0 ≤ t < U , so that Q(vt) = αi,t for some vt ∈ L.
Then (Z2r, Tr(δQ)) is a Z-lattice containing 2U vectors of length 1,
namely ±vt, as

Tr(δQ(±vt)) = Tr(δαi,t) = 1.

Observe that if Q is classical, then Tr(δQ) is also classical. Therefore
by repeatedly splitting off 1 (see beginning of Section I.5 below) we
get

Z2r = ⟨1⟩ ⊥ ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩ ⊥ L′,

where ⟨1⟩ is repeated U times in the diagonal part. Thus 2r ≥ U .
Step 3. If Q is non-classical, we use known bound on the number of

length-one vectors: There are ≤ max(r2, 240) of them in a non-classical
Z-lattice of rank r.

Summary

Denote m(K) the minimal rank of a universal OK-lattice over K and
mclass(K) the minimal rank of a classical universal OK-lattice.

For K = Q(
√

D) with
√

D = [u0, u1, . . . , us], we have [BK18, 4]
1
2 max(ui)1/2 ≤ m(K) ≤ 8

s∑
i=1

ui ≪
√

D(log D)2

1
2 max(ui) ≤ mclass(K) ≤ 8

s∑
i=1

ui ≪
√

D(log D)2
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If the fundamental unit is not totally positive (i.e., s odd), this
is not too bad: the lower bound is D1/4 and D1/2 for m(K) and
mclass(K), respectively. In the case when the fundamental unit is totally
positive (i.e., s even), there are arbitrarily large differences between
the lower and upper bounds, e.g., for

√
D = [u0, 1, 1, . . . , 1, 2u0], we get

1/2 ≤ mclass(K) ≤ 4s. Obtaining better lower bounds would require
including all the indecomposables, not just αi,t for a fixed i.

However, Kala–Yatsyna–Żmija recently expanded on these results
by showing that

Theorem 7 ([KYZ23, Theorem 1.1]). Let ε > 0. For almost all
squarefree D > 0, we have that

mclass(Q(
√

D)) ≫ε D
1

12 −ε and m(Q(
√

D)) ≫ε D
1

24 −ε.

By “almost all” we mean that the set of such D has (natural)
density 1 among the set of all squarefree D > 0.

Finally, let us mention an open problem. Thanks to Chan–Oh
[CO23], we know that there exist finite criterion sets, that give
analogues of the 15- and 290-Theorems over any number field. However,
the corresponding bounds are explicitly known only for classical forms
over Q(

√
5) [Lee08], and determining them more generally seems to be

quite hard. In a very recent work, Kala–Krásenský–Romeo [KKR24]
obtain several exciting results in this direction.

I.5 General results
Let us now turn to fields of higher degree, and to several possible
approaches for studying universal forms over them. Throughout this
section, K thus denotes a totally real number field of degree d = [K :
Q].

Using units

Let (L, Q) be a classical universal quadratic lattice. Using Gram–
Schmidt orthogonalization, it is easy to see that each unit splits off,
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and in particular L = ⟨1⟩ ⊥ L′ for some lattice L′ ⊂ L. Now any square
of a unit is represented by ⟨1⟩, so it need not be represented by L′.
But if ε ∈ O×,+

K is a unit which is not a square, then L′ must represent
ε and hence L = ⟨1, ε⟩ ⊥ L′′ for some lattice L′′ ⊂ L. Continuing
like this leads to the following observation: The rank of a classical
universal lattice is always greater than or equal to #O×,+

K /O×2
K .

Since K is totally real, there are d−1 fundamental units ε1, ε2, . . . ,
εd−1, which implies O×,+

K ≃ Zd−1. We can distinguish the two extreme
cases:

• No fundamental unit is totally positive. Then each totally positive
unit is a square, i.e., O×,+

K = O×2
K .

• All fundamental units are totally positive. Then O×2
K ≃ (2Z)d−1

and #O×,+
K /O×2

K = 2d−1.

In the general situation when k fundamental units are totally
positive, the rank of a classical universal lattice is ≥ 2k. If k ≥ 2, this
proves a special case of Kitaoka’s conjecture, i.e., that K has no ternary
classical form. Not much is thus missing to prove the full conjecture,
it would suffice to show the existence of a few indecomposables!

Also in the non-classical case, one can obtain a similar result using
our new criterion from Theorem 20.

As we already mentioned, recall that Hilbert’s reciprocity law
implies a theorem of Earnest–Khosravani [EK97]: If d is odd, then
there is no ternary universal lattice (for local reasons).

Bounds on indecomposables

It is not hard to show a general upper bound on the norm of an
indecomposable (although surprisingly, this bound was discovered
only very recently, even though this question is, e.g., formulated as
[Nar04, Problem 53]).

Theorem 8 ([6, Theorem 5]). Each indecomposable has norm ≤
discK/Q. In fact, if N(α) > discK/Q, then α ≻ β2 for some non-zero
β ∈ OK .
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Proof. Let us sketch the proof. Let α be an element of norm N(α) >
discK/Q, and let σ1(α), . . . , σd(α) be its conjugates. By Minkowski’s
theorem, for a sufficiently small ε > 0 the box{

x ∈ Rd : |xi| ≤
√

σi(α) − ε, i = 1, . . . , d

}
in the Minkowski space contains a non-zero element β ∈ OK . Then
α ≻ β2, and α is therefore decomposable.

Before proceeding further, note that we have already seen [Sie45]
that typically not all totally positive integers are sums of squares, but
we can ask: What is the smallest integer P such that if an element is the
sum of squares, then it is the sum of at most P squares? This integer
P is called the Pythagoras number of the ring OK and is known to be
always finite, but can be arbitrarily large [Sch80b] (cf. also [Pol18]).
However, there is an upper bound for Pythagoras numbers of orders
in number fields that depends only on the degree of the number field
[2, Corollary 3.3].

In the case of real quadratic number fields K = Q(
√

D) the
Pythagoras number is always ≤ 5, and this bound is sharp [Pet73]. In
fact, one can show that P(OK) = 3 for D = 2, 3, 5 [Coh60, Sch80a]
and determine all D for which P(OK) = 4 (as in [CP62]). For some
further recent results, see [1, Kra22, KRS22, Raš23, Tin23a].

Thanks to Theorem 8 above, if we have an element of large norm,
we can successively subtract squares from it until we are left with
something of norm ≤ discK/Q. If we then rewrite the sum of squares
as the sum of P squares, we obtain the following result:

Corollary 9 ([6, Theorem 6]). The quadratic form∑
αx2

α + y2
1 + · · · + y2

P ,

where we sum over all square classes of elements α ∈ O+
K with norm

Nα ≤ discK/Q, is universal and has rank ≪ discK/Q · (log discK/Q)d−1.
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Elements of trace 1

In Section I.3 we saw lower bounds for ranks of universal quadratic
lattices in terms of elements of trace 1 in the codifferent. Exactly the
same result holds in general.

Theorem 10 ([Yat19], [4, Section 7.1]). Assume that there are
β1, . . . , βu ∈ O+

K , δ ∈ O∨,+
K such that Tr(βiδ) = 1 for all i. Then

m(K) ≥ u

d
, mclass(K) ≥

√
u

d
.

How to find such elements? There is no general way (after all,
there may be no totally positive elements in the codifferent that have
trace 1), so one may have to rely on explicit constructions (such as in
the proof of Theorem 6 or 12). However, let us also briefly discuss a
method which uses the Dedekind zeta function.

The Dedekind zeta function is defined as

ζK(s) =
∑

A≤OK

1
(NA)s

, ℜs > 1,

where the sum runs over all integral ideals A, and NA is the ideal norm.
The series converges absolutely for ℜs > 1 and ζK has a meromorphic
continuation to the entire complex plane with a simple pole at s = 1.
It satisfies a functional equation which relates ζK(s) to ζK(1 − s).

For us, the important important fact is that Siegel related the
value ζK(−1) to elements of small trace [Sie69], [Zag76, §1].

Theorem 11 (Siegel’s formula for ζK(−1) and functional equation).
Assume that K is a totally real field of degree d = 2, 3, 5, 7. Then

∑
α∈O∨,+

K
Trα=1

σ
(
(α)(O∨

K)−1
)

= 1
bd

∣∣∣discK/Q

∣∣∣3/2
(−1

4π

)d

ζK(2)

for a suitable bd ∈ Q (e.g., b2 = 1
240 , b3 = − 1

504 , . . . ). Here

σ(B) =
∑
A|B

N(A).
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A similar formula holds in each degree d, but as the degree grows,
it will involve elements of large traces (roughly, of traces up to d/6).

Siegel’s formula plays a key role in the proof of Theorem 16
concerning the lifting problem.

Large ranks

Let us also summarize here the known results on the existence of
number fields with large minimal rank m(K). For quadratic fields, we
have already seen this in Section I.3, and in the cubic case, this is
originally due to Yatsyna [Yat19, Theorem 5], and we will establish
this in Section I.6 below.

A natural idea for extending these results to higher degrees is to
start with a field K with large m(K) and to consider overfields L ⊃ K.
This was first carried out for multiquadratic fields [KS19], and then
extended to all fields of degrees divisible by 2 and 3 [5].

Finally, Man [Man24] (and then Kala–Man [KM24]) significantly
strengthened the results over multiquadratic fields and, in particular,
established analogue of Theorem 7 on density 1 of real quadratic fields
requiring large ranks of universal forms.

I.6 Families of cubic fields
Over a fixed field, one can compute everything explicitly, e.g., there are
finitely many totally positive elements α with norm N(α) ≤ discK/Q
(up to multiplication by units), and we can check which ones are
indecomposable. We can also compute the codifferent and check which
elements have trace 1.

For all fields of a given degree d, the problem is much harder.
For real quadratic fields Q(

√
D), one can use continued fractions to

determine indecomposables and estimate ranks of universal forms. We
might attempt to use generalized continued fractions [Ber71, Sch00] for
fields of a higher degree – they are much worse behaved but there are
some ongoing works in connection with the Jacobi–Perron algorithm
[RSK24, KST23]. Geometric generalized continued fractions [Kar13],
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such as Klein polyhedra and sails, are also promising, since there is a
close connection to indecomposables, as very recently investigated by
Kala–Man [KM24].

Rather than working with all fields, it is however typically easier to
focus on a suitable family of fields that share some relevant properties
(such as the structure of units and indecomposables).

The simplest cubic fields

We describe first the family of totally real cubic fields introduced by
Shanks [Sha74].

Let K = Q(ρ) where ρ is a root of the polynomial

f(x) = x3 − ax2 − (a + 3)x − 1, a ≥ −1.

If we order the three roots ρ, ρ′, ρ′′ as ρ > ρ′′ > ρ′, then they are of
approximate sizes ρ ≈ a+1, ρ′′ ≈ 0 and ρ′ ≈ −1. It is a useful fact that
all the roots are units, and are permuted under the mapping α 7→ −1

1+α .
We thus see that the other two conjugates ρ′ and ρ′′ also belong to K,
K is the splitting field of f , and the Galois group Gal(K/Q) ≃ Z/3 is
cyclic.

Another consequence is that K has units of all signatures. The
discriminant of the polynomial f equals discf = (a2 + 3a + 9)2. If
a2 + 3a + 9 is squarefree (which happens for a positive density of a),
then OK = Z[ρ]. The units are small, hence the regulator is also small,
and the class number formula implies that the class number is large,
roughly ≈ a2 (up to a logarithmic factor).

When we search for indecomposables in a totally real number field
K, it is natural to consider K in the Minkowski space by the mapping

σ : K ↪→ Rd, α 7→ (σ1(α), σ2(α), . . . , σd(α)).

For example, consider the situation in a real quadratic field K =
Q(

√
D) with a fundamental totally positive unit ε. We can multiply

every totally positive element by a suitable unit to move it into the
cone R≥0 · 1 +R>0 · ε spanned by 1 and ε. If β ≻ 1 or β ≻ ε, then it is
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not indecomposable, so we can further restrict our attention to the
parallelogram

[0, 1) · 1 + [0, 1) · ε = {t1 · 1 + t2 · ε | t1, t2 ∈ [0, 1)}.

The situation in totally real cubic fields is similar. The totally
positive units form a discrete set located on the hyperboloid {(x, y, z) ∈
R3 | xyz = 1} in the Minkowski space. Up to multiplication by units,
each element is contained in the polyhedral cone

C = R≥0 · 1 + R≥0 · ε1 + R≥0 · ε2 + R≥0 · ε1ε2,

where ε1 and ε2 generate the totally positive unit group. This is
essentially the content of Shintani’s unit theorem [Neu99, Thm (9.3)].
The cone C is the union of two “triangular” cones spanned by 1, ε1,
ε2 and ε1, ε2, ε1ε2, respectively. Again, we can restrict our search for
indecomposables to the parallelepipeds [0, 1) · 1 + [0, 1) · ε1 + [0, 1) · ε2
and [0, 1) · ε1 + [0, 1) · ε2 + [0, 1) · ε1ε2.

Note that the considerations above are a precursor to the more
systematic study of sails [KM24].

In the simplest cubic fields, this approach (described in more
detail in [4, Section 4]) is explicit enough that we can determine all
indecomposables.

Theorem 12 ([4, Theorem 1.2]). Let K = Q(ρ) be a simplest cu-
bic field such that OK = Z[ρ]. Up to multiplication by units, all
indecomposables are

• 1

• 1 + ρ + ρ2

• −v −wρ+(v +1)ρ2, 0 ≤ v ≤ a, v(a+2)+1 ≤ w ≤ (v +1)(a+1),
a triangle with a2+3a+2

2 indecomposables.

For the indecomposable 1 + ρ + ρ2, we have

min
{

Tr(δ(1 + ρ + ρ2)) | δ ∈ O∨,+
K

}
= 2.
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For the indecomposables α = −v − wρ + (v + 1)ρ2 in the triangle,

min
{

Tr(δα) | δ ∈ O∨,+
K

}
= 1.

Corollary 13 ([4, Theorem 1.1]). Let K = Q(ρ) be a simplest cubic
field such that OK = Z[ρ]. Then

• there exists a diagonal universal form of rank ∼ 3a2,

• any classical universal lattice has rank ≥ a2

6 ,

• any universal lattice has rank ≥ a
3
√

2 .

Gil Muñoz and Tinková [GT24] extended these results to also
cover some non-monogenic simplest cubic fields.

Tinková [Tin23a, Tin23b] further obtained similar results in other
families of cubic fields.

I.7 Continued fraction families of real
quadratic fields

The aforementioned families of cubic fields are directly inspired by
similar families of real quadratic fields, i.e., in degree two. The two
most well-known examples are:

• Yokoi’s family Q(
√

m2 + 4). If m = 2n + 1 is odd, then the
relevant continued fraction is

1 +
√

(2n + 1)2 + 4
2 = [n + 1, 2n + 1].

• Chowla’s family Q(
√

4m2 + 1).
It is also easy to see that

√
n2 − 1 = [n − 1, 1, 2(n − 1)].

The idea is to generalize this by considering families Q(
√

D) where
√

D = [u0, u1, u2, . . . , us−1, 2u0]

with s and u1, . . . , us−1 fixed. A necessary condition is that the se-
quence u1, . . . , us−1 must be symmetric, i.e., ui = us−i. It turns out
that this condition is almost sufficient for the existence of D.
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Theorem 14 ([Fri88, Theorem]). Let u1, . . . , us−1 be symmetric, and
define the numbers qi via:

qi+1 = ui+1qi + qi−1, q−1 = 0, q0 = 1.

(This will be the sequence of denominators of the convergents pi
qi

, and
it does not depend on u0.)

There are infinitely many squarefree positive integers D ≡ 2, 3
(mod 4) such that

√
D = [k, u1, . . . , us−1, 2k] if and only if qs−2 or

q2
s−2−(−1)s

qs−1
is even (otherwise, there is no such D, even when we drop

the condition “squarefree”).
In such a case, all D and k are given by

D = D(t) = at2 + bt + c, k = k(t) = et + f, t ≥ 1

for fixed integers a, b, c, e, f that can be explicitly given in terms of ui.

There is a similar characterization for D ≡ 1 (mod 4) and the
continued fraction expansion of 1+

√
D

2 [HK91].
These families have a number of advantageous properties:

• The fundamental unit ε depends linearly on t.

• The class number is large, essentially t/ log t by the class number
formula (see [7, DK18, DL18]).

• Indecomposables behave nicely (as in the simplest cubic fields).

Since the continued fraction controls ranks of universal lattices as
we saw in Section I.4, we gain a lot of information about m(K) for
fields in a given family arising as in Theorem 14 and, in particular, we
get results akin to Corollary 13.

I.8 Lifting problem for universal forms
When can a quadratic form with coefficients in Z be universal over a
larger number field K? The answer to this question, which we call the
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lifting problem, seems to be “very rarely”, at least for number fields of
small degrees.

For K different from Q and Q(
√

5), the sum of squares is not
universal by Siegel’s theorem. In particular, there is no universal
diagonal Z-form (for each diagonal Z-form is represented by the sum
of sufficiently many squares).

Kala–Yatsyna [2] extended this to general forms over real quadratic
fields, as conjectured by Deutsch [Deu08].

Theorem 15 ([2, Theorem 1.1]). If K ̸= Q(
√

5) is a real quadratic
field, then there is no universal Z-form over K.

For the proof, we again want to work with “minimal vectors” of the
corresponding quadratic O-lattice (L, Q), as in the proof of Theorem
6. For a Z-lattice, they are the vectors v such that Q(v) is the smallest
represented positive integer. This does not make a good sense over
OK , so we take a suitable δ ∈ O∨

K and consider TrK/Q(δQ(v)) (which
is a positive integer). We then decompose this “twisted trace form” as
a tensor product and use properties of “lattices of E-type” to control
its minimal vectors.

More generally, in [2], we further used Siegel’s formula for special
values of the Dedekind zeta-function (Theorem 11) to show the
following.

Theorem 16 ([2, Theorem 1.2]). If K is a totally real number field
of degree d = 2, 3, 4, 5, 7 which has

• principal codifferent ideal, and

• a universal quadratic form with coefficients in Z,

then K = Q(
√

5) or K = Q(ζ7 + ζ−1
7 ), where ζ7 = e2πi/7. The form

x2+y2+z2 is universal over Q(
√

5), and x2+y2+z2+w2+xy+xz+xw
is universal over Q(ζ7 + ζ−1

7 ).

The assumption that the codifferent ideal is principal is unavoidable
given the methods of [2]; it is satisfied for example when the rings
of integers OK has a power basis, or when the class group of K is
(Z/2)k.
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Theorem 16 already inspired a number of follow-up articles. Besides
some preliminary works [GT24, 9] (the latter of which partly replaced
the degree restriction by the assumption d ≤ 43), D. Kim–S. H. Lee
[KL24] significantly strengthened these results to cover all cubic and
biquadratic fields. Notable are also the considerations of the indefinite
case by He–Hu–Xu [HHX23] and Xu–Zhang [XZ22].

The current state of art is again due to me and Yatsyna [KY24,
Theorem 1.2]: We showed that in degrees d ≤ 5 there are no further
fields having a universal form with Z-coefficients. The idea behind
the proof is to move from the representability of elements over OK

to the representability of quadratic Z-forms q of rank ≤ d. As d ≤ 5
and 2q is classical, we can use a well-known theorem of Mordell and
Ko [Ko37] that 2q is the sum of squares of linear forms. This in turn
implies that all elements of 2O+

K are sums of squares, a condition that
can be checked by large computations (involving ten million number
fields) [KY24, Theorem 1.1].

Besides this, Kala–D. Kim–S. H. Lee recently showed the following
general lifting result.

Theorem 17 ([KKL24, Theorem 1.1]). Let F be a totally real number
field and d ∈ Z+. There are at most finitely many totally real fields
K ⊃ F with [K : F ] = d such that there is an OF -lattice L such that
L ⊗ OK is universal.

We further obtained the first explicit results concerning lifting
from a base field F ̸= Q, see [KKL24, Theorems 1.2 and 1.3].

I.9 Infinite extensions and Northcott
property

Recently we have been interested in studying universal quadratic
forms and lattices over algebraic extensions K ⊂ Q of infinite degree.
Again the natural case to consider is that K is totally real in the sense
that all elements of K have only real conjugates.

Depending on the field K, it is then not clear whether universal
lattices exist! When K = Qtr, the field of all totally real numbers,
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then every element of O+
K is a square, i.e., the unary form X2 is

universal. However, considering the maximal real multiquadratic field
Qtr,2 = Q(

√
n | n ∈ Z+), Daans–Kala–Man [10] proved that it does

not admit any universal lattice.
The key to the proof is our novel connection to the Northcott

property: For an algebraic integer α, define its house as α = maxi(|αi|),
where α1 = α, . . . , αn are all the conjugates of α. We then say that
OK has the Northcott property (with respect to the house) if, for every
r ∈ R, there exist only finitely many α ∈ OK with α < r. Already in
1962, J. Robinson [Rob62] showed that the ring of integers of Qtr,2

has the Northcott property, and concluded that the first order theory
of this ring is undecidable. The term Northcott property was coined in
2001 by Bombieri–Zannier [BZ01] who established that certain abelian
extensions have the Northcott property. Since then, its study and
applications have become a highly active research area (due to its
connections with decidability and Diophantine geometry).
Theorem 18 ([10, Theorem 1.2]). Let K be a totally real infinite
extension of Q. If OK has the Northcott property, then there exists no
universal quadratic lattice over K.

This theorem immediately applies to K = Qtr,2, as Bombieri–
Zannier proved that it has the Northcott property (and likewise, e.g.,
for the compositum of all totally real Galois extensions of Q of degree
exactly q, where q = p or p2 for a prime p).

Further, Daans–Kala–Man–Widmer–Yatsyna [DKM+24] inves-
tigated how often do infinite extensions have universal lattices or
Northcott property. There are uncountably many totally real fields K,
and so we have to proceed topologically: As each totally real field can
be embedded into Qtr, we consider the set X of all subfields of Qtr.
We endow X with the constructible topology, i.e., the coarsest topology
for which the sets {K ∈ X | a ∈ K} are both open and closed, for all
a ∈ Qtr. With respect to this topology, we obtain the following result.
Theorem 19 ([DKM+24, Theorems 1 and 3]). The sets of totally
real fields

a) which admit a universal quadratic lattice, or
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b) for which the ring of integers has the Northcott property

are both meager subsets of X .

Recall that a subset of a topological space is called meager if it
is a countable union of nowhere dense subsets and comeager if its
complement is meager. In a Baire space, such as X , non-empty open
sets are non-meager and comeager sets are dense. Therefore, meagerness
is a natural notion of “smallness” in a Baire space. Our approach is
inspired by [DF21] and [EMSW23], who considered meagerness in a
similar topological space to study non-definability of rings of integers
in infinite extensions of Q.

The proof of Theorem 19a) is based on a new connection between
ranks of universal lattices and square classes of totally positive units
that has not been known even over number fields.

Theorem 20 ([DKM+24, Theorem 2]). Let K ∈ X and n ≥ 2. A
totally positive definite quadratic OK-lattice of rank n represents at
most 2n − 2 classes of O×,+

K /O×2
K .

This theorem is a significant extension of the well-known “splitting
off units” for classical lattices, thanks to which a classical lattice of
rank n can represent at most n unit square classes.

I.10 The individual articles
Let us conclude the Overview by explicitly commenting on the articles
comprising the second part of the thesis within the context outlined
above.

Quadratic forms over Z

While universal quadratic forms over Z are completely understood
thanks to the 15- and 290-Theorems (see Section I.1), there are
many open problems on integers represented (for example) by ternary
forms. One of them was tackled by Hejda–Kala [3]: We investigated
the diagonal ternary forms that represent all elements of a given
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arithmetic progression px + ℓ, especially in the case when p is a prime
and 1 ≤ ℓ < p. We provided significant computational evidence for
the surprising conjecture that such forms exist only for the primes
p = 2, 3, 5, 7, and 101.

[3] T. Hejda and V. Kala. Ternary quadratic forms representing a
given arithmetic progression. J. Number Theory, 234:140–152,
2022.

Ranks of universal lattices

One could list more of the articles in this section, but [4] and [5] most
directly deal with ranks of universal lattices.

[4] V. Kala and M. Tinková. Universal quadratic forms, small norms
and traces in families of number fields. Int. Math. Res. Not.
IMRN, 2023(9):7541–7577, 2023.

[5] V. Kala. Number fields without universal quadratic forms of
small rank exist in most degrees. Math. Proc. Cambridge Philos.
Soc., 174:225–231, 2023.

Kala–Tinková [4] initiated the detailed study of the geometry of
the totally positive octant that led to the results on indecomposables
and universal lattices described in Section I.6. And in the paper [5],
we established a procedure for extending results on large ranks of
universal lattices from a subfield to a larger field, and used it to extend
the known results (such as [BK15, Kal16, 4, Yat19]) in degrees 2 and
3 to fields in all degrees divisible by 2 or 3.

Continued fractions and class numbers

The papers [7] and [8] concern the structure of continued fractions of√
D and its relation to class numbers of real quadratic fields Q(

√
D),

as described in Section I.7.
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[7] G. Cherubini, A. Fazzari, A. Granville, V. Kala, and P. Yatsyna.
Consecutive real quadratic fields with large class numbers. Int.
Math. Res. Not. IMRN, (14):12052–12063, 2023.

[8] V. Kala and P. Miska. On continued fraction partial quotients
of square roots of primes. J. Number Theory, 253:215–234, 2023.

While it was known that there are ≫
√

X squarefree values of
D ∈ [1, X] such that the fundamental unit εD of Q(

√
D) satisfies

log εD ≪ log D (and so the corresponding class number is large by
class number formula; see, e.g., [Hoo84] for an overview of related
results), it was expected that these units and class numbers for different
values of D behave independently. Surprisingly, in Cherubini–Fazzari–
Granville–Kala–Yatsyna [7] we observed that this is not necessarily
the case! Using certain families coming from continued fractions, we
showed that, for each positive integer k, there are many values of n
such that the class numbers of Q(

√
n + 1),Q(

√
n + 2), . . . ,Q(

√
n + k)

are all essentially as large as possible (and their units are all ≪ D).
In [8], Kala–Miska consider continued fractions of √

p and
√

2p,
where p is a prime. We obtained several results on the structure of their
periods and partial quotients and, among others, answered several
open questions of Miska–Ulas [MU22] on the appearance of 1 as a
partial quotient.

Lifting problem

The articles [1, 2, 6, 9] deal primarily with the lifting problem discussed
in Section I.8.

[1] V. Kala and P. Yatsyna. Sums of squares in S-integers. New
York J. Math., 26:1145–1154, 2020.

[2] V. Kala and P. Yatsyna. Lifting problem for universal quadratic
forms. Adv. Math., 377:107497, 2021.

[6] V. Kala and P. Yatsyna. On Kitaoka’s conjecture and lifting
problem for universal quadratic forms. Bull. Lond. Math. Soc.,
55:854–864, 2023.
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[9] V. Kala and M. Melistas. Universal quadratic forms and
Dedekind zeta functions. Int. J. Number Theory, 20:1833–1847,
2024.

In [2], Kala–Yatsyna introduced the problem and proved several
foundational results on it, including Theorems 15 and 16.

When studying universal lattices, it is often natural to consider
not only lattices that represent all of O+

K , but those that represent all
of mO+

K for a fixed positive integer m. The advantages of doing this
are twofold. First of all, many of the results about universality directly
generalize also to this setting. Second, if (L, Q) is a universal lattice,
then (L, 2Q) is a classical lattice that represents 2O+

K . Sometimes
it can thus be better to work with (L, 2Q), so that one can apply
results that concern only classical lattices, such as the splitting off
units discussed above, or the theorem of Mordell and Ko on the
representability of classical Z-forms as the sum of squares of linear
forms.

This is the setting of [1] where Kala–Yatsyna focus on the question:
For which pairs (m, D) are all the elements of mO+

Q(
√

D) represented
by the sum of squares? They obtain several explicit positive and
negative results that were further refined by Raška [Raš23].

Kala–Yatsyna [6] further proved a first version of the “weak lifting
theorem”, Theorem 17 that was then used in [KKL24] in the proof
of its version stated above. They also established Theorem 8 and
Corollary 9, as well as a weak version of Kitaoka’s conjecture 4.

Finally, Kala–Melistas [9] expanded on the use of Dedekind zeta-
function to strengthen some of the general estimates that appeared in
[2].

Infinite extensions and Northcott property

Daans–Kala–Man [10] established Theorem 18 on the non-existence
of universal lattices over infinite extensions that have the Northcott
property, as explained in Section I.9.

[10] N. Daans, V. Kala, and S. H. Man. Universal quadratic forms
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and Northcott property of infinite number fields. J. Lond. Math.
Soc., 110:e70022, 2024.
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