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Abstract

Author’s contribution to the mathematical area of arith-
metic circuit complexity is described.

The area studies the complexity of computing polyno-
mials over a field. Its objective is to find a dividing line
between polynomials which can be computed efficiently as
opposed to these which are hard to compute. The central
open problem in the field is to present an explicit polyno-
mial which is hard to compute.

The thesis consists of twelve selected publications of
the author on this subject. They are divided into four
categories. In Section 2.1, we present some structural re-
sults on arithmetic computations including a connection
between monotone and general computations. Section 2.2
investigates τ -conjectures which connect hardness of com-
putation with more tractable complexity measures. In Sec-
tion 2.3, we present results on non-commutative compu-
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tations. In Section 2.4, non-commutative computation is
related to a classical problem of Hurwitz and some results
on the latter problem are presented.



1. Introduction

Mathematics draws an abstract line between existence and
non-existence. It shows which objects can in principle exist
and what are their possible relations. There is a Platonic
solid with eight faces but none with sixteen; every natural
number is a sum of four squares whereas seven is not a
sum of three squares. Mathematics is also a discipline
invented by our finite and fallible minds. Hence it has
always favored constructive or algorithmic solutions. The
five Platonic solids can be built in physical space; a four-
square representation of a number can be found using pen
and paper.

The notion of an algorithm has received an exact math-
ematical formulation in the field of computability theory.
Its generic goal is to find the line between problems which
are algorithmically solvable and those that are not. This
question has been further refined by the young field of com-
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plexity theory which asks which problems can be solved by
an algorithm efficiently, within reasonable time or memory
constraints. This refinement has been largely motivated
by an attempt to understand limitations of physical com-
puters. There is also a philosophical undertone: since the
human brain is limited, it can be viewed as an investigation
of inherent limitations of the human mind. However, com-
plexity theory is a mathematical discipline with exactly
formulated theorems and problems. The field is especially
rich in its famous unsolved problems – they capture our
imagination, challenge us to discover new mathematical
methods, and motivate development of methods in other
areas of mathematics.

Computation of polynomials

In this thesis, we focus on complexity of computation of
polynomials. Given a multivariate polynomial with coeffi-
cients from a field, it can always be computed from vari-
ables and constants by applying the operations addition
and multiplication. The question is how many of these
operations are needed.

The standard computational model is that of an arith-
metic circuit : starting from variables or constants, the
circuit computes new polynomials by means of addition
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and multiplication operations. The model is not realistic
in the sense that numbers can be added/multiplied at a
unit cost. It nevertheless provides a clean mathematical
paradigm for the study of algebraic computations. Sev-
eral algorithms of practical interest can be phrased in this
language. A prominent example is an efficient computa-
tion of the determinant of a matrix. This can in turn be
used in many algorithms based on linear algebra. Other
examples include fast matrix multiplication or fast Fourier
transform (see, e.g., [BCS97]).

The major open question in the field is to prove a
super-polynomial lower bound against arithmetic circuits.
Namely, we want to find an explicit n-variate polynomial
of degree d ≤ nO(1) which requires an arithmetic circuit of
a super-polynomial size in n. This is known as the VP vs
VNP problem and is the algebraic analogue of the famed
P vs. NP question. Despite decades of work, the best
lower bound for circuits computing an explicit n-variate
polynomial of degree d is Ω(n log d), due to Baur and
Strassen [Str73b, BS83]. Better lower bounds are known
for a variety of more restricted computational models, such
as monotone circuits, multilinear or bounded depth cir-
cuits (see, e.g., [JS82, Raz04]).

In algebraic complexity theory, two polynomials are of
central interest: the determinant and the permanent of a
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square matrix1

detn(X) =
∑
σ

sgn(σ)

n∏
i=1

xi,σ(i) , permn(X) =
∑
σ

n∏
i=1

xi,σ(i) .

Despite the similarity of these expressions, the two poly-
nomials stand on opposite sides of the complexity land-
scape. In [Val79], Valiant defined algebraic analogues of
complexity classes P and NP, which we now call VP and
VNP, and showed that the permanent polynomial is com-
plete for the class VNP (if the underlying field is of char-
acteristic different from two). This means that proving
VP ̸= VNP is equivalent to proving super-polynomial cir-
cuit lower bounds for the permanent polynomial. In con-
trast, the determinant is efficiently computable by a poly-
nomial size arithmetic circuit, and hence lies in the class
VP. This allows to rephrase the VP vs. VNP question
as a clean mathematical problem which does not refer to
computations at all: how large an m is needed so that
the permanent polynomial permn can be expressed as the
determinant of an m ×m matrix with affine functions as
entries? This formulation seems open to techniques from
algebraic geometry and representation theory and has lead
to developement of geometric complexity theory [Lan13].

1Here, σ ranges over permutations of {1, . . . , n} and sgn(σ) ∈
{1,−1} is the sign of σ.
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An arithmetic circuit is an algebraic counterpart of a
Boolean circuit. A Boolean circuit computes a Boolean
function by means of elementary operation ∧,∨,¬. In
complexity theory, the latter plays a more fundamental
role: a super-polynomial lower bound on Boolean circuit
size for a function in NP would imply P ̸= NP. This
explains one motivation for the study of arithmetic lower
bounds. An arithmetic circuit can be viewed as a restricted
version of a Boolean circuit. Hence, hardness results in the
arithmetic setting are believed to be easier to obtain than
in the Boolean setting, and VP vs. VNP can be seen as a
toy version of P vs. NP.

Arithmetic computations display a rich structure in
their own right. For example, [VSBR83] shows that arith-
metic computations are efficiently parallelizable and [BS83]
shows that there is no quantitative difference between com-
puting a single polynomial and a set of polynomials. These
results have no known counterpart in the Boolean setting.
The essence of algebraic computations naturally invites
tools from very different mathematical disciplines such as
algebraic geometry, analysis or topology. In turn, ques-
tions in complexity theory motivate development of these
fields, and this interplay creates a rich soil in which an-
swers will blossom one day.



2. Complexity of arithmetic cir-
cuits

2.1 Structural results

Arithmetic circuit lower bounds can be obtained if other
restrictions on their computational power are imposed.
Most notably, a monotone circuit is an arithmetic circuit
over the reals involving only non-negative constants. Ex-
ponential lower bounds for monotone circuits computing
the permanent (and other monotone polynomials) have
been obtained in [JS82, Val80]. There it was also shown
that monotone computations are exponentially weaker than
general ones. These results are similar to monotone lower
bounds in Boolean complexity [Raz85, AB87]. Let us re-
mark that the Boolean results are significantly harder to
prove.

10
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The relative ease with which monotone arithmetic lower
bounds can be proved creates an illusion that monotone
circuits are understood completely. A result of the author
shows that this is by far not the case.

• In [Hru20a], it has been shown that a sufficiently
strong lower bound on monotone arithmetic circuits
implies lower bounds in the unrestricted setting. More
precisely, if a polynomial f ∈ R[x1, . . . , xn] of degree
d has an arithmetic circuit of size s then (x1 + · · ·+
xn + 1)d + ϵf has a monotone arithmetic circuit of
size O(sd2 + n log n), for some ϵ > 0.

Hence, a strengthening of current monotone lower bound
techniques can in principle resolve the VP vs VNP prob-
lem. [Hru20a] also contains results pertaining to Boolean
circuit complexity: the task of proving Boolean circuit
lower bounds is related to bounding the non-negative rank
of a certain explicit matrix.

A classical result [VSBR83] shows that arithmetic com-
putations are efficiently parallelizable: an arithmetic cir-
cuit of size s computing a polynomial of degree d can
be converted to a circuit of depth O(log d(log s + log d)).
This is one of the key aspects of arithmetic computations
that have no Boolean counterpart. It also implies that
arithmetic circuits computing low-degree polynomials can
by quasi-polynomially simulated by arithmetic formulas –
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a model capturing parallel computations. Whether this
quasi-polynomial simulation can be improved to a poly-
nomial one is an open problem. It is unresolved because
it is not known how to prove lower bounds on arithmetic
formula size.

In the world of monotone computations, tightness of
[VSBR83] and similar transformations can often be proved
be exhibiting separations between corresponding models
[SS79].

• [HY16] (with A. Yehudayoff) investigates algebraic
branching programs – a model capturing complexity
of computations based on linear algebra. It is shown
that the transformation of [VSBR83] is tight in this
setting by giving a super-polynomial separation be-
tween monotone circuits and branching programs.

A combinatorial contribution of the paper consists in a
characterisation of expansion properties of finite binary
trees.

An arithmetic circuit computes a polynomial over a
fixed underlying field F. How does the underlying field
affect the computational power? For example, the VP
vs. VNP problem is not a single problem but rather a
multitude of questions depending on the choice of F. It
is in principle possible, though believed unlikely, that the
question would have a different answer over different fields.
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A field has two main properties: size and characteristic.
The influence of field size on arithmetic computations was
investigated in [HY11]. The characteristic of F is a more
influential parameter. Many classical polynomial identities
which are used in complexity theory hold in characteris-
tic zero only – Newton’s identities are one such example.
Among positive characteristics, characteristic 2 seems to
behave differently than the others – for example, the proof
of VNP-completeness of permanent requires characteristic
different from 2.

• In [Hru16b] new VNP-complete families in character-
istic 2 were designed. They correspond to polynomial-
time decidable problems, a phenomenon previously
encountered only in characteristic ̸= 2.

This indicates that characteristic 2 may not be that special
after all.

2.2 τ-conjectures

A specific approach towards arithmetic lower bounds comes
from τ -conjecture of Blum and Shub [SS95]. The conjec-
ture asserts that any univariate polynomial which is easy
to compute can have only a small number of integer roots.
The conjecture was originally designed to imply that P is
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different from NP in Blum-Shub-Smale model of compu-
tation [BSS89]. This is a model of Turing-style computa-
tions over R where elementary arithmetic operations can
be performed at a unit cost.

It was later shown in [Bür09] that τ -conjecture implies
exponential arithmetic circuit lower bounds and hence1

VP̸= VNP. One drawback of the conjecture is that, by
referring to integer roots, it leads one to the area of number
theory which is notorious for its hard problems.

However, the conjecture has several modifications, re-
lating computational complexity with the number of real
roots, or with a geometric structure of the Newton poly-
tope of a polynomial [Koi11, KPTT15]. They take an in-
spiration from Descartes’ rule of signs which implies that
a real univariate polynomial f with k non-zero coefficients
can have at most (k − 1) positive roots. This holds re-
gardless of the degree of f and suggests that in the real
setting, sparsity of a polynomial has a role similar to the
notion of degree in the complex setting. Indeed, this anal-
ogy was developed by Khovanskii in his general theory of
fewnomials [Kho91]. The τ -conjecture of Koiran [Koi11]
can be seen as an extension of Descartes’ rule to a class of
polynomials with a simple arithmetic structure.

1This applies in the so-called constant-free setting which we will
not discuss here.
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Any one of these conjectures, if true, is known to imply
exponential arithmetic lower bounds. Their main appeal
is their mathematical clarity. Futhermore, they relate the
mysterious notion of complexity with more tractable mea-
sures.

• In [Hru13], it was shown that instead of studying
real roots of a polynomial, it is enough to study the
distribution of arguments of its complex roots on the
complex plane.

This is important because complex zeros are easier to de-
termine than real zeros (which are in turn easier to han-
dle than integer zeros). Furthermore, [Hru13] relates the
problem with other topics such as Hurwitz stable polyno-
mials or equidistribution of sequences or roots of Erdös
and Turán [ET50].

• [HY23] (with A. Yehudayoff) investigates connec-
tions between arithmetic complexity of a polynomial
and geometric complexity of its Newton polytope. It
is shown that some versions of τ -conjecture hold in
the monotone setting while some generalizations do
not.

The paper also relates the topic with a specific estimate
on the number of vertices of a 2-dimensional shadow of the
Birkhoff polytope (cf. Chapter 3, Problem 2 ).
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• The paper [Hru20b] relates the distribution of roots
of a univariate polynomial with the number of ver-
tices of the Newton polytope of a related bivariate
polynomial. This implies a connection between dif-
ferent versions of the τ -conjecture.

[Hru20b] is mainly a self-contained result in pure mathe-
matics which gives quantitative estimates on distribution
of zeros of univariate polynomials.

It is possible that these results will be ultimately ex-
tended to a counterexample to some versions of τ -conjecture.
This will, at the same time, allow us to focus on the cor-
rect notion of geometric complexity which may eventually
lead to circuit lower bounds.

2.3 Non-commutative computations

A restricted class of arithmetic circuits are non-commutative
circuits, where multiplication does not commute. Starting
with seminal works of Hyafil [Hya79] and Nisan [Nis91],
non-commutative circuits are a well-studied object. The
lack of commutativity is a severe limitation on its com-
putational power which makes the task of proving circuit
lower bounds apparently easier. In [Nis91], an exponen-
tial lower bound on non-commutative arithmetic formulas
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was presented. Nevertheless, proving lower bounds in the
setting of non-commutative circuits is still open.

• [HY13] (with A. Yehudayoff) gave a strong separa-
tion between formulas and monotone circuits in the
non-commutative setting, answering an open prob-
lem from [Nis91].

The arithmetic circuit model can be easily modified
to encompass computation of rational functions instead
of polynomials. This can be achieved by allowing a di-
vision or an inverse gate as an extra operation. In the
commutative setting, this extension is merely cosmetic. A
computation of a rational function f can be viewed as a
computation of a pair of polynomials g, h with f = gh−1.
Moreover, a classical result of Strassen [Str73a] shows that
inverse gates do not help to cumpute a polynomial: if a
polynomial has a small circuit with inverse gates, it also
has a small circuit without them.

Non-commutative rational functions display a richer
structure giving rise to new phenomena. While every com-
mutative rational function can be expressed using one in-
verse gate only, non-commutatively an arbitrary number
of inverses may be necessary. Moreover, inverse operations
may be nested as in (x+ ux−1v)−1. Non-commutative ra-
tional functions form a free skew field. A beautiful theory
of these skew fields has been developed by P. M. Cohn
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[Coh95] and others. They are equipped with invariants
not present in the standard commutative field of fractions.

• In [HW15], the author (with A. Wigderson) initiated
the study of non-commutative arithmetic computa-
tions with inversions. A basic theory of these compu-
tations was developed. It was shown that the inverse
of a matrix consisting of n2 non-commuting variables
can be computed by polynomial size circuit with in-
versions, whereas it requires an exponential size for-
mula. It was also shown that matrix inverse displays
similar completeness properties as the commutative
determinant.

In [HW15], the following question emerged: given a ma-
trix M with affine functions as entries, can we give an
efficient algorithm for testing whether M is invertible over
the skew field of fractions? This question lead to beau-
tiful subsequent results [GGdOW20, IQS18] which give a
polynomial-time algorithm for testing invertibility of M .
(Over the commutative field of fractions, this is still an
open problem).
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2.4 The sum-of-squares problem

In [HWY11], the problem of non-commutative lower bounds
was related to a classical problem of Hurwitz on sum-of-
squares composition formulas.

The problem of Hurwitz [Hur98] asks for which integers
n,m, k does there exist a sum-of-squares identity

(x21 + · · ·+ x2n)(y
2
1 + · · ·+ y2m) = f2

1 + · · ·+ f2
k ,

where f1, . . . , fk are bilinear forms in x and y with complex
coefficients. Focusing on the case m = n, the question is
how large a k = k(n) is needed in terms of n. A seminal
theorem of Hurwitz asserts that k must be strictly larger
than n except for the special cases n ∈ {1, 2, 4, 8}. Note
that for n = 2, k = 2 is achieved by the identity

(x21 + x22)(y
2
1 + y22) = (x1y1 − x2y2)

2 + (x1y2 + x2y1)
2

which can be interpreted as multiplicativity of the norm
on complex numbers. Similarly, the case of n = 4 is solved
by Euler’s identity which is related to multiplicativity of
the norm on quaternions.

The asymptotic dependence of k on n in Hurwitz’s
problem is not known. An elementary argument gives
n ≤ k(n) ≤ n2. Owing to Hurwitz’s theorem, the first in-
equality is strict with the exception of n ∈ {1, 2, 4, 8}. The
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upper bound can be slightly improved to O(n2/ log n) us-
ing another classical result of Hurwitz and Radon [Hur23].
An intriguing question is whether k grows as a super-linear
function of n.

• [HWY11] (with Wigderson and Yehudayoff) asserts
that if k grows sufficiently fast in terms of n in Hur-
witz’s problem (namely, as Ω(n1+ϵ) for some ϵ > 0)
then we obtain exponential circuit lower bounds in
the non-commutative setting.

In other words, a solution to the classical mathematical
problem of Hurwitz can provide computational hardness
results.

In subsequent works, the author made several attempts
to resolve Hurwitz’s problem itself.

• In [HWY13] (with Wigderson and Yehudayoff) such
a solution was provided under the assumption that fi
have integer coefficients. A lower bound of Ω(n6/5)
is proved under this assumption.

• In [Hru16a], the problem was reduced to a problem
about rank of matrices in a family of pairwise anti-
commuting matrices.

• In [Hru24], a new construction of sum-of-squares com-
position formulas was presented. It gives k ≤ O(n1.62)
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which is the first asymptotically truly sub-quadratic
construction to have been obtained.

Classical constructions of sum-of-squares identities involve
integer coefficients and it is unclear whether using real or
complex coefficients can give any advantage. This gives
hope that the lower bound from [HWY13] can be extended
to the case of general coefficients as well. On the other
hand, [Hru24] goes in the opposite direction. Over com-
plex numbers, it gives a more efficient construction than
previously believed possible.



3. Future directions

Major open problems in arithmetic circuit complexity re-
main open. In this thesis, we identified some viable ap-
proaches towards their solution which should be further
pursued.

The first one is to analyze geometrical properties of
the Newton polytope of multivariate polynomials, or the
structure of real and complex roots of univariate polyno-
mials. The goal is to obtain geometric measures which
guarantee hardness of computation. Results from Section
2.2 focused on pre-existing forms of τ -conjecture of Koiran
et al. Other variants can be imagined – for example, to
relate computational complexity of a polynomial with the
magnitude of its derivative. There is no convincing reason
why any of these conjectures should be true. It is however
quite possible that their study will eventually lead to a dis-
covery of the correct complexity measure which guarantees

22
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hardness of computation.
The second one is the sum-of-squares problem of Hur-

witz from Section 2.4. This is a clean mathematical prob-
lem with a long history whose solution may eventually
present itself. The recent result [Hru24] indicates that
the problem is more complicated than originally hoped.
On the hand, as pointed out in [HWY11], the problem of
Hurwitz can be modified in several ways to make it eas-
ier, while at the same time retaining its applications to
complexity theory.

As is common, many new open problems were encoun-
tered in this research. We include some specific open ques-
tions.

Specific open problems

1. [HY23] The Birkhoff polytope DSn ⊆ Rn×n is the
set of n × n doubly-stochastic matrices. Let m(n)
be the largest m such that there exists a linear map
L : Rn×n → R2 such that the polytope L(DSn) has
m vertices. Does m(n) grow exponentially with n?

2. [HY23] Find an explicit monotone polynomial f (with
polynomially many variables and of a polynomial de-
gree) such that g requires a super-polynomial mono-
tone arithmetic circuit whenever g ̸= 0 and f divides



24

g.

3. [Hru24] Prove a truly sub-quadratic upper bound on
Hurwitz’s problem over the real numbers R.

4. [HWY13] Prove a super-linear lower bound on Hur-
witz’s problem over Gaussian integers Z[i].

5. [Hru20a] Show that (
∏n

j=1

∑n
i=1 xi,j − permn) re-

quires a monotone arithmetic circuit of super-polynomial
size. How about (

∏n
j=1

∑n
i=1 xi,j + permn)?

6. [HW15] Assume that a non-commutative polynomial
f can be computed by a non-commutative circuit
with inverse gates of size s. Give a non-trivial up-
per bound on the size of a circuit without inverses
computing f .
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[Hru24] P. Hrubeš. A subquadratic upper bound on
sum-of-squares composition formulas. In Com-
putational Complexity Conference, 2024.



26
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S. Thomassé. A τ -conjecture for New-
ton polygons. Foundations of computational
mathematics, 15(1):187–197, 2015.

[Lan13] J. M. Landsberg. Geometric complexity the-
ory: an introduction for geometers, 2013.

[Nis91] N. Nisan. Lower bounds for non-
commutative computation. In Proceeding of
the 23th STOC, pages 410–418, 1991.



30

[Raz85] A.A. Razborov. Lower bounds on the mono-
tone complexity of some boolean functions.
Soviet Mathematics Doklady, 31:354–357,
1985.

[Raz04] R. Raz. Multi-linear formulas for permanent
and determinant are of super-polynomial
size. In Proceeding of the 36th STOC, pages
633–641, 2004.

[SS79] E. Shamir and M. Snir. On the depth com-
plexity of formulas. Journal Theory of Com-
puting Systems, 13(1):301–322, 1979.

[SS95] M. Schub and S. Smale. On the intractability
of Hilbert’s nullstellensatz and an algebraic
version of P=NP. Duke Mathematical Jour-
nal, 81(1):47–54, 1995.

[Str73a] V. Strassen. Vermeidung von divisionen. J.
of Reine Angew. Math., 264:182–202, 1973.

[Str73b] Volker Strassen. Die Berechnungskom-
plexität von elementarsymmetrischen Funk-
tionen und von Interpolationskoeffizien-
ten. Numerische Mathematik, 20(3):238–
251, 1973.



31

[Val79] L. G. Valiant. Completeness classes in alge-
bra. In STOC, pages 249–261, 1979.

[Val80] L. G. Valiant. Negation can be exponen-
tially powerful. Theoretical Computer Sci-
ence, 12:303–314, 1980.

[VSBR83] L. Valiant, S. Skyum, S. Berkowitz, and
C. Rackoff. Fast parallel computation of
polynomials using few processors. Siam J.
Comp., 12:641–644, 1983.


