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Synopsis
The thesis contains 17 papers of the author written jointly with 22 coau-
thors revolving around the theory of dense graph limits (a.k.a. graphons).

Three papers in Part I study the relation between the cut distance
which underlies the topology of graphons and the weak* topology. This
leads in particular to alternative proofs of the Lovász–Szegedy compact-
ness theorem. The fourth paper deals with norms defined by homomor-
phism densities, an recently emerged area which connects functional
analysis and extremal graph theory. It answers a question of Hatami
about moduli of convexity and smoothness of weakly norming graphs.
The second result in the paper is a strong factorization result for norms
defined by disconnected graphs. This factorization results in fact cor-
rects a number of imprecisions which existed in literature in the theory
of graph norms regarding disconnected graphs.

Part II introduces and studies counterparts to concepts well known
in finite graphs, such as independent set, clique, coloring, matching,
and tiling in the setting of graphons. In particular, for the concepts of
matchings and tilings, we are able to translate much of the powerful
theory of linear programming to the graphon setting. As an applica-
tion, we reprove the tiling theorem of Komlós, adding a stability part
to it. The last paper in Part II deals with fractional isomorphism.
Fractional isomorphism is a concept that existed for finite graphs for
four decades and its graphon version was recently worked out by Gre-
bík and Rocha. We prove that fractionally isomorphic graphons can
be approximated by fractionally isomorphic finite graphs, thus linking
tightly the connection between the graph and the graphon concept and
answering the main question of Grebík and Rocha.

Part III deals random structures connected with graphons. Two
papers give results on G(n,W ) which is a graphon generalization of the
well studies Erdős–Rényi random graph model G(n, p). In particular,
we obtain a counterpart for G(n,W ) of the classical results of Matula,
and independently Grimmett and McDiarmid from the 1970s about
the clique number in G(n, p). Another paper in Part III deals with the
uniform spanning tree of a graph. This is a basic model in probability
theory with important links to statistical physics. In particular, four
decades ago, Kolchin and independently Grimmett proved that locally
the uniform spanning tree of the complete graph Kn converges to the
Galton–Watson branching tree with offspring distribution Poisson(1)
conditioned on survival, as n → ∞. We provide a counterpart to
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this statement for uniform spanning trees on sequences of finite graphs
(Gn)n, which converge to a graphon W . In particular, we show that
the local limit distribution of the uniform spanning tree corresponds
to a certain inhomogeneous branching process derived from W . The
last two papers in Part III introduce a new theory, which we call “flip
processes”. Flip processes are a general framework of graph dynamics,
which in particular extends the Erdős–Rényi graph and the triangle-
removal graph process. Each flip process is given by a “rule” which is
a set of transformations on k-vertex graphs. Starting with an initial
graph, in each step of the dynamics, a random k-tuple is sample from
the graph and is replaced according to the rule. The main result is that
typical behavior of such flip processes on finite graphs can be modeled
by real-time trajectories on the space of graphons.

Part IV deals with other theories of limits of discrete structures.
Two papers are contributions to existing limit theories, of partially
ordered sets, and permutations, respectively. The theory of limits of
partially ordered sets was introduced by Janson who gave a certain
construction of limit objects on some ad hoc measure space equipped
with a partial order. We give a more canonical construction by con-
structing the limit on [0, 1] with the standard order. Our contribution
to the theory of permutation limits is in the area of pattern-avoidance.
This is arguably the most important direction of research in combi-
natorial study of permutations. Our result about permutons — limit
counterpart to permutations — says that any pattern-avoiding permu-
ton has necessarily one-dimensional structure, compared to generally
two-dimensional structure of permutons. The third paper introduces a
new limit theory, namely that of Latin squares.
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Introduction
This document is a summary to my thesis Graph limits to submitted
for the DSc degree at the Czech Academy of Sciences. The thesis itself
consists of the following 17 papers.

• In Part I: Topologies on the graphon space,

[P1] Martin Doležal, Jan Hladký: Cut-norm and entropy mini-
mization over weak* limits, Journal of Combinatorial The-
ory, Series B 137 (2019), 232–263.

[P2] Martin Doležal, Jan Grebík, Jan Hladký, Israel Rocha, Vá-
clav Rozhoň: Relating the cut distance and the weak* topol-
ogy for graphons. Journal of Combinatorial Theory, Series
B 147 (2021), 252–298.

[P3] Martin Doležal, Jan Grebík, Jan Hladký, Israel Rocha, Vá-
clav Rozhoň: Cut distance identifying graphon parameters
over weak* limits. Journal of Combinatorial Theory, Series
A 189 (2022), Paper No. 105615, 57 pp.

[P4] Frederik Garbe, Jan Hladký, Joonkyung Lee: Two remarks
on graph norms. Discrete and Computational Geometry 67
(2022), no. 3, 919–929.

• In Part II: Classical graph-theoretic concepts in graphons,

[P5] Jan Hladký, Ping Hu, Diana Piguet: Tilings in graphons.
European Journal of Combinatorics 93 (2021), Paper No.
103284, 23 pp.

[P6] Jan Hladký, Ping Hu, Diana Piguet: Komlós’s tiling theorem
via graphon covers. Journal of Graph Theory 90 (2019), no.
1, 24–45.

[P7] Martin Doležal, Jan Hladký: Matching polytons. Electronic
Journal of Combinatorics 26 (2019), no. 4, Paper No. 4.38,
33 pp.

[P8] Jan Hladký, Israel Rocha: Independent sets, cliques, and
colorings in graphons. European Journal of Combinatorics
88 (2020), 103108, 18 pp.

[P9] Jan Hladký, Eng Keat Hng: Approximating fractionally iso-
morphic graphons. European Journal of Combinatorics 113
(2023), 103751, 19 pp.
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• In Part III: Inhomogeneous random structures from graphons,

[P10] Jan Hladký, Christos Pelekis, Matas Šileikis: A limit the-
orem for small cliques in inhomogeneous random graphs.
Journal of Graph Theory 97 (2021), no. 4, 578–599.

[P11] Martin Doležal, Jan Hladký, András Máthé: Cliques in dense
inhomogeneous random graphs. Random Structures and Al-
gorithms 51 (2017), no. 2, 275–314.

[P12] Jan Hladký, Asaf Nachmias, Tuan Tran: The local limit of
the uniform spanning tree on dense graphs. Journal of Sta-
tistical Physics 173 (2018), no. 3-4, 502–545.

[P13] Frederik Garbe, Jan Hladký, Matas Šileikis, Fiona Skerman:
From flip processes to dynamical systems on graphons, An-
nales de l’Institut Henri Poincaré (B) Probabilités et Statis-
tiques, accepted, available on journal webpage.

[P14] Pedro Araújo, Eng Keat Hng, Jan Hladký, Matas Šileikis:
Prominent examples of flip processes, Random Structures
and Algorithms, 64 (2024), no. 3, 692–740.

• In Part IV: Limits of other discrete structures,

[P15] Frederik Garbe, Robert Hancock, Jan Hladký, Maryam Shar-
ifzadeh: Limits of Latin squares, Discrete Analysis 2023:8,
66pp.

[P16] Jan Hladký, András Máthé, Viresh Patel, Oleg Pikhurko:
Poset limits can be totally ordered, Transactions of the Amer-
ican Mathematical Society, Volume 367 (2015), pages 4319-
4337.

[P17] Frederik Garbe, Jan Hladký, Gábor Kun, Kristýna Pekárková:
On pattern-avoiding permutons, Random Structures and Al-
gorithms, DOI: 10.1002/rsa.21208.

These results concern the theory of dense graph limits. The idea
of this theory, initiated by Lovász and Szegedy [25] and by Borgs,
Chayes, Lovász, Sós and Vesztergombi [6], is in compactifying the space
of isomorphism types of finite graphs.1 More precisely, Lovász and

1All finite graphs are considered simple (that is, each pair of vertices induces 0
or 1 edges), undirected and without self-loops. While the assumption about self-
loops is insignificant and a limit theory of directed graphs can be created mutatis
mutandis, the simplicity assumption is important and limit theories of sequences
multigraphs (of unbounded edges multiplicities in particular) are more subtle.
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Szegedy introduce the notion of graphons, which are defined as sym-
metric Lebesgue measurable functions W : [0, 1]2 → [0, 1]. We write
W0 for the set of graphons and λ for the Lebesgue measure. Each finite
graph can be represented by a graphon by simply taking its adjacency
matrix and squashing it into the unit square. In particular, a graphon
representation is {0, 1}-valued and constant on squares the whose side-
length is the inverse of the number of vertices. The construction of a
compact metric is done in two steps. First, we define the cut norm of
a symmetric function Z ∈ L∞ (

[0, 1]2
)

as

∥Z∥□ = sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

Z

∣∣∣∣ ,

where the supremum ranges over all measurable sets S, T ⊂ [0, 1]. The
assumption of measurability of sets and functions will be implicit below.
The compactness theorem then reads as follows. Let d□(·, ·) be the
induced distance, the so-called cut norm distance. Then we define the
cut distance between two graphons U and W by

δ□(U,W ) = inf
π

∥U −Wπ∥□ ,

where the infimum ranges over all measure preserving bijections π :
[0, 1] → [0, 1] and we define Wπ(x, y) := W (π(x), π(y)). A particular
feature is that if we have graphons U and W obtained by squashing
adjacency matrices of the same graph which just differ by the order
in which the vertices were enumerated, we have δ□(U,W ) = 0. This
feature does away with the potential issue of nonuniqueness of the ad-
jacency matrix. The compactness theorem of Lovász and Szegedy then
reads as follows.

Theorem 1. For each sequence of graphs G1, G2, . . . there exists a
subsequence Gn1

, Gn2
, . . . and a graphon W so that δ□ (Gni

,W ) → 0
as i → ∞.

Much of the strength of the theory of graph limits stems from this
single result. That is, the compactness theorem allows to transfer state-
ments from the category of finite graphs (in particular, when they are
of asymptotic nature) to the category of graphons. The advantages of
working with the latter is in availability of various analytic tools. This
idea follows a common framework in mathematics, which underlies even
the most basic concepts. We illustrate this on one of the most funda-
mental concepts in mathematics — that of real numbers. Indeed, much
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of the motivation of introducing the real numbers is that computations
— even those that are phrased purely in terms of rational numbers —
become more tractable in this bigger completion due to availability of
tools such as differential and integral calculus. Returning to the theory
of graph limits and the compactness theorem, note that it is crucial that
many important graph parameters (and their extensions to graphons)
are continuous with respect to the cut distance.

Part I: Topologies on the graphon space

Papers [P1], [P2], and [P3] create a framework that connects the cut
distance and the weak* topology. I will describe these three papers, and
return to [P4] later. By routinely unfolding the definition of the cut
distance, we see that convergence of graphons W1,W2, . . . to a graphon
W in it amounts to the existence of a sequence of measure preserving
bijections π1, π2, . . . : [0, 1] → [0, 1] such that

lim sup
n

sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

Wπn
n −W

∣∣∣∣ = 0 . (1)

This formula is similar to convergence in weak* topology when consid-
ering the predual of L1-functions on [0, 1]2. Indeed, such a convergence
amounts to

sup
S,T⊂[0,1]

lim sup
n

∣∣∣∣∫
S×T

Wπn
n −W

∣∣∣∣ = 0 . (2)

In particular, it is an easy exercise that the former implies the latter.
The weak* topology (on uniformly bounded functions, which graphons
are) is compact by the Banach–Alaoglu theorem. So, if it were, that
the two metrics were equivalent, we would get Theorem 1 for free as
a consequence. Alas, taking (Wn)n to be the system of 2-dimensional
Rademacher functions (a.k.a. chessboards) and W ≡ 1

2 , we get an
example of functions satisfying (2) (even with π1 = π2 = . . . = id) but
not (1).

The idea behind [P1] is that while the weak* convergence condition
(2) itself is not sufficient to identify cut distance limits, it may be useful
to narrow the search space for them. More specifically, we introduce
the entropy function Ent : W0 → [0, 1] by

Ent(W ) :=

∫
x

∫
y

H(W (x, y)) ,
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where H is the binary entropy function,

H(t) = −t log2 t− (1− t) log2(1− t) .

Given a sequence of graphons W1,W2, . . ., we define ACC(W1,W2, . . .)
as the set of accumulation points in the weak* topology over all se-
quences Wπ1

1 ,Wπ2
2 , . . .. The main result of [P1] then reads as follows.

Theorem 2. Suppose that W1,W2, . . . is a sequence of graphons and
W ∈ ACC(W1,W2, . . .) is such that Ent(W ) = infU∈ACC(W1,W2,...) Ent(U).
Then W is a cut distance accumulation point of W1,W2, . . ..

Hence Theorem 2 almost reproves Theorem 1. The only issue is that
we are not guaranteed the existence of the entropy minimizer. That is,
while the Banach–Alaoglu theorem guarantees that ACC(W1,W2, . . .) ̸=
∅, we do not have a guarantee that the infimum of entropies is at-
tained. We surmount this shortcoming by the following result, also
given in [P1].

Proposition 3. Suppose that W1,W2, . . . is a sequence of graphons.
Then there exists a subsequence Wn1

,Wn2
, . . . such that there exists a

graphon W ∈ ACC(Wn1
,Wn2

, . . .) with the property that

Ent(W ) = inf
U∈ACC(Wn1

,Wn2
,...)

Ent(U) .

Obviously, applying first Proposition 3 and then Theorem 2 implies
Theorem 1. (Let us remark, that our proof was not the only alternative
to Theorem 1, another proof using nonstandard analysis was given by
Elek and Szegedy [10], whose main aim was to develop limit theory of
hypergraphs.) In time of writing [P3], we viewed Proposition 3 merely
as a technical nuisance. I will return to this later.

Papers [P2] and [P3] were written at around the same time, extend-
ing [P1] in two different ways. Paper [P2] takes an abstract perspective.
With that perspective, every graphon is rather seen through its enve-
lope, ⟨W ⟩ = ACC(W,W, . . .). Recall that given a metric space (X, d),
there is a notion of Vietoris hyperspace over X, which is a space whose
points are nonempty closed sets of X, and distance between two of
them is defined as

dV H(A,B) = max

(
max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(a, b)

)
.
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It is a well-known fact that the Vietoris hyperspace of a compact Haus-
dorff space is again compact. We take this general construction to
X = W0 equipped with (a metrization of) the weak* topology. The
closed sets we pay particular attention to are the envelopes. The impor-
tance of this point of view is shown by the following theorem, proven
in [P2].

Theorem 4. Suppose that W is a graphon and that W1,W2, . . . is a
sequence of graphons. Then the sequence of envelopes ⟨W1⟩ , ⟨W2⟩ , . . .
converges to the envelope ⟨W ⟩ in the Vietoris hyperspace over the weak*
topology if and only if W1,W2, . . . converges to W in the cut distance.

Let us now give another main result of [P2]. This time we do not
directly work with the concept of envelopes. Rather, we work with a
set LIM (W1,W2, . . .) which is defined the same as ACC(W1,W2, . . .)
but using limit points rather than accumulation points.

Theorem 5. Suppose that W1,W2, . . . is a sequence of graphons. Then
there is a subsequence Wn1

,Wn2
, . . . such

ACC(Wn1
,Wn2

, . . .) = LIM (Wn1
,Wn2

, . . .) .

Theorem 5 generalizes Proposition 3 since it can be easily shown
that LIM (Wn1 ,Wn2 , . . .) is closed in L1 and thus an entropy minimizer
exists. But so far, it could be regarded again just as a convenient
auxiliary result. The next theorem from [P2] however shows the com-
binatorial relevance of sequences with ACC = LIM.

Theorem 6. A sequence of graphons W1,W2, . . . is Cauchy in the cut
distance if and only if ACC(W1,W2, . . .) = LIM (W1,W2, . . .). Further-
more, in this case the limit graphon W satisfies LIM (W1,W2, . . .) =
⟨W ⟩.

We remark that some of the result from [P2] could be derived from
the theory of “multiway cuts” worked out in [7]. However, we believe
that our view is a more conceptual one, and directly suited to the
analytic setting.

Let us now turn to [P3]. The key concept is that of cut distance
identifying graphon parameters. More precisely, we say that a graphon
parameter f : W0 → R is cut distance identifying if for every sequence
of graphons W1,W2, . . . and for every W ∈ LIM (W1,W2, . . .) we have
that f(W ) is the minimum (or maximum, depending on the context)
of f(U) over U ∈ LIM (W1,W2, . . .). In that language, the main result
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of [P1] is that the parameter Ent(·) is cut distance identifying. In [P3]
we establish that several other important graph parameters are cut dis-
tance identifying. Here, we recall the two most important such results,
one concerning norming graphs and the other concerning spectra.

To explain the first result, we need to recall the recall the notion
of graph norms. These were introduced by Hatami in [16]. Given a
graph H and a symmetric bounded function U : [0, 1]2 → R, we define
∥U∥H := e(H)

√
t(H,U) and ∥U∥r(H) :=

e(H)
√
|t(H,U)|, where t(H,U) is

the usual homomorphism density,

t(H,U) =

∫
x∈[0,1]V (H)

∏
ij∈E(H)

U(xi, xj) .

We say that H is norming if ∥·∥H is a norm, and that H is weakly
norming if ∥·∥r(H) is a seminorm. We prove that for each norming
graph H, the parameter t(H, ·) is cut distance identifying. By fur-
ther arguments, we can actually resolve a conjecture of Kráľ, Mar-
tins, Pach, and Wrochna [23] which concerns two extremal concepts
stemming from “Sidorenko’s conjecture”. Recall that this conjecture
from the 1993 (made in a slightly different form also by Erdős and
Simonovits in 1983) asserts that for each bipartite graph H and for
each graphon W we have t(H,W ) ≥ t

(
H,W1{[0,1]}). Here, for P a

finite partition of [0, 1] into sets of positive measure, we define the step-
ping W1P = E [W | P × P]. This conjecture was strengthened into
the “Forcing conjecture” of Skokan and Thoma, [31]: For each bipartite
graph H which is not a forest we have t(H,W ) > t

(
H,W1{[0,1]}) unless

W is a constant graphon. It is easy that in both cases the opposite di-
rections “Sidorenko⇒bipartite” and “forcing⇒bipartite non-forest” are
trivial. Both conjectures are among the most important open problems
in extremal graph theory. The reason Hatami introduced graph norms
was his observation that every weakly norming graph is Sidorenko, and
further, if ∥·∥H is uniformly convex – a property he established in the
same paper for all norming graphs – then the the graph is forcing.
In fact, it turns out it is more useful to introduce concepts of “step-
Sidorenko” and “step-forcing” properties, as was done in [23]. We say
that a graph H is step-Sidorenko if t(H,W ) ≥ t

(
H,W1P) for every

P a finite partition of [0, 1] and every graphon W . We say that H is
step-forcing if t(H,W ) > t

(
H,W1P) for every P a finite partition of

[0, 1] and every graphon W with W ̸= W1P . Our main connection
between graph norms and step-Sidorenko/-forcing properties from [P3]
goes as follows.
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Theorem 7.

• Suppose that H is a connected graph. Then H is step-Sidorenko
if and only if it is weakly norming.

• Suppose that H is a graph. If H is norming then it is step-forcing.

Let us now turn to the spectral result. We recall the theory of
graphon spectra briefly. Each graphon W can be viewed as an operator
from L2 ([0, 1]) to itself defined by Wf(x) =

∫
y
W (x, y)f(y). This is

a Hilbert–Schmidt operator and thus has a real spectrum which is an
at most countable set in [−1, 1] with only possibly accumulation point
at 0. Our result is that the spectrum is a cut distance identifying.
Obviously, the precise definition has to exceed that of (one-dimensional)
“parameters”. So, what we prove is that if W is a cut distance limit of
W1,W2, . . . and U ∈ LIM (W1,W2, . . .) then for the eigenvalues of W ,

λ+
1 ≥ λ+

2 ≥ . . . > 0 > . . . ≥ λ−
2 ≥ λ−

1

and for the eigenvalues of U ,

κ+
1 ≥ κ+

2 ≥ . . . > 0 > . . . ≥ κ−
2 ≥ κ−

1

we have λ+
i ≥ κ+

i and λ−
i ≤ κ−

i for every i. Further, at least one of
these inequalities is strict of U is not a cut distance limit of W1,W2, . . ..

The last important topic from [P3] is a connection between the the-
ory cut distance identifying graphon parameters and regularity lemmas
(and the Frieze–Kannna regularity lemma from [12] in particular).2
Recall that in the heart of proofs of regularity lemmas is the “index-
pumping lemma”. The “index” here is traditionally taken to be the
L2-norm and the key argument is that when refining an irregular par-
tition, the index goes up. We show that any cut distance identifying
graph parameter can be taken as the index. This includes homomor-
phism densities of each norming graph, such as the 4-cycle.

Let us now turn to the last a short paper [P4]. It contains two results
concerning norming and weakly norming graphs. The first result is
about moduli of convexity and smoothness. These are classical notions
in functional analysis that describe geometric properties of a Banach
space. The Banach space in question is the linear extension W of the
space of graphons. Equivalently, W consists of all symmetric functions
in L∞ (

[0, 1]2
)
. The first result in this direction, obtained in the seminal

2First comments on such a connection appear already in [P1].
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paper [16], says that if H is a norming graph with m edges, then the
modulus of convexity and the modulus of smoothness of ∥·∥r(H) are (up
to a constant factor) the same as for the Lm-norm. The Lm-norm is
well-understood, and in particular is uniformly convex and uniformly
smooth. Answering an open problem from [16], we prove the following
negative result.

Theorem 8. Suppose that H is a weakly norming graph. Then ∥·∥r(H)

is not uniformly convex nor uniformly smooth in W.

We now turn to the second result of [P4]. The result fits in a broad
framework of trying to understand how one can compose a norming
graph from several smaller norming graphs, or dually, how one can
decompose a norming graph into several smaller norming graphs. The
simplest such composition concept is that of taking a disjoint union. It
is trivial to check that if H is a norming graph and G consists of any
number of disjoint copies of H, then G is again norming, and ∥·∥H =
∥·∥G. The same can be seen for weakly norming graphs. We prove that
this is the only of creating norming or weakly norming graphs with
several connected components. Obviously, from this characterization,
we need to discard isolated vertices, which play no role in the definition
of homomorphism density and hence of graph norms.

Theorem 9. Suppose that F is a disconnected graph without isolated
vertices.

• If F is norming then all the components of F are isomorphic to
the same norming graph.

• If F is weakly norming then all the components of F are isomor-
phic to the same weakly norming graph.

This result corrects a number of omissions in standard texts in-
cluding [24]. These texts worked with assumptions such as “Take an
arbitrary norming graph F . Without loss of generality, suppose that
F is connected.” It is only Theorem 9 that indeed justifies that these
assumptions can be made.

Part II: Classical graph-theoretic concepts in
graphons

This part explores the connection between concepts and parameters
that are extensively studied in graphs, and their graphon counterpart.

11



Since the theory of graphons is fairly young, some even basic notions
were not developed for graphons prior to our work.

Papers [P7] and [P5] introduce the concept of the matching ratio
and F -tiling ratio for graphons. The notion of matchings is standard
and needs to introduction but it is worth recalling that of F -tilings.
Given graphs F and G, an F -tiling in G is a collection of vertex-disjoint
copies of F . These copies are not required to be induced. The F -tiling
number of G, denoted til(F,G), is the maximum size of an F -tiling.
When F = K2, we get the concepts of matchings and of the matching
number.

In the setting of dense graphs, we will be looking at F fixed, G

large, and introduce the rescaling til(F,G)
v(G) . When extending a graph

parameter to graphons, we usually want to do it in a fashion which is
continuous with respect to the cut distance. This is not possible for the
parameter til(F,·)

v(·) . Indeed, for n ∈ N take Gn to be n disjoint copies of

F . It is obvious that til(F,Gn)
v(Gn)

= 1
v(F ) which is as big as til(F,·)

v(·) can get.
On the other hand, the sequence (Gn) n has the constant-0 graphon
O as the cut distance limit. Even before having defined the F -tiling
ratio of a graphon, it is obvious, that we must have til(F,O) = 0,
thus showing discontinuity. However, in [P5] we do come up with a
reasonable concept of the F -tiling ratio of a graphon, which is lower
semicontinuous. I will explain the idea in the simplest case F = K2,
where I take the liberty of assuming the reader’s familiarity with the
notion of fractional matchings, vertex covers, fractional vertex covers,
and the relations between them given by the linear programming dual-
ity. While the matching number and the fractional matching number
can be different in general, the (very broad) message of [17] was that
they should be regarded as similar for dense graphs. If that is the case,
then, by the the LP duality, this quantity is equal to the minimum
fractional vertex cover. And while the concepts of matchings and the
fractional matchings are elusive at best for graphons, fractional vertex
cover generalizes in a straightforward way. That is, we say that a func-
tion f : [0, 1] → [0, 1] is a fractional vertex cover of a graphon W if for
almost every (x, y) ∈ [0, 1]2 we have

W (x, y) = 0 or f(x) + f(y) ≥ 1 .

To conclude, we define the matching ratio of a graphon W as the infi-
mum of ∥f∥1 over all fractional vertex covers f of W . In [P5] we show
that the matching ratio (and F -tiling ratio) defined in this way enjoys
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many favorable properties.
In [P7] we work out a graphon counterpart to the matching potytope

(and its variants). To give an example of results we prove, recall a
well-known theorem in graph theory that says that the vertices of the
fractional matching polytope are integral if and only if the graph is
bipartite. We prove a graphon counterpart of this result.

Paper [P6] uses the theory of F -tilings to reprove and strengthen a
beautiful extremal graph theoretic result of Komlós [22]. Let us give
some background. Suppose that F is a fixed graph of chromatic number
r, n is large, and G is a graph of order n. It is easy to see (for example
from the Erdős–Stone theorem) that if the minimum degree of G is at
least

(
1− 1

r−1 + on(1)
)
n then G contains a copy of F . It is further easy

to see that if we change the on(1)-term to a fixed constant ϵ > 0, then
G contains an F -tiling of size linear in n. We can now ask what is the
optimal minimum-degree bound for G to contain an F -tiling of a given
size. To this end, Komlós came up with a parameter, called the critical
chromatic number of F . We will not define it here, but the definition is
not difficult and the parameter satisfies χcr(F ) ∈ (r − 1, r]. He proved
that the chromatic number and the critical chromatic number are the
relevant quantities for the minimum-degree for an F -tiling of a given
size, where the former plays a more important role for smaller size and
the latter takes over for bigger sizes.

Theorem 10. Suppose that F is fixed, and α ∈ (0, 1] is given. An
n-vertex graph G with minimum degree at least(

(1− α) ·
(
1− 1

χ(F )− 1

)
+ α ·

(
1− 1

χcr(F )

))
n (3)

contains an F -tiling covering (α− on(1))n vertices of G.

Furthermore, Komlós showed that the bound is best possible. That
is, he constructed a graph, called the bottleneck graph Bn,α,F , satisfying
the bound (3). The construction is a simple modification of the usual
construction of Turán graphs. Komlós’ proof was quite unique. While
in extremal graph theory, it is very standard to apply the Regularity
lemma and work with the cluster graph of the original graph, Komlós
applied the Regularity lemma iteratively, thus obtaining “the cluster
graph of the cluster graph of . . . of G”; the number of iterations depends
on the on(1)-term.

Using the theory of F -tilings in graphons developed in [P5] we re-
prove Theorem 10 adding a stability counterpart to it. It is worth
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noting that while sometimes a stability result can be obtained from the
original extremal result just by carefully revising the proof, I do not
think anything like that would be possible with the iterative regular-
ization of the original proof.

Theorem 11. Suppose that F is fixed, and α ∈ (0, 1) is given. For each
ϵ > 0 there exists an δ > 0 with the following property. An n-vertex
graph G with minimum degree at least(

(1− α) ·
(
1− 1

χ(F )− 1

)
+ α ·

(
1− 1

χcr(F )

))
n

contains an F -tiling covering (α+ δ)n vertices of G unless G is ϵ-close
to Bn,α,F in the edit distance.

We now turn to [P8]. This paper introduces and studies several
further classical concepts from graph theory to the setting of graphons.
The most important of them is that of an independent set. We say that
a set I ⊂ [0, 1] is an independent set of a graphon W if W is constant-0
almost everywhere on I × I. The independence ratio is then defined as
α(W ) = supI λ(I), where the supremum is over all independent sets I.
This definition extends the definition of the independence number of
a finite graph and the independence ratio as its natural rescaling. We
prove that the independence ratio is lower semicontinuous.

Theorem 12. The independence ratio is lower semicontinuous in the
cut distance topology.

We now move to the chromatic number. We say that a graphon
W is k-colorable if there exists a partition [0, 1] = I1 ⊔ I2 ⊔ . . . ⊔ Ik
into independent sets. Obviously, there is also a nontrivial concept of
countable colorability. The chromatic number χ(W ) is the least k for
which k is k-colorable. We prove that the chromatic number is lower
semicontinuous. However, the two most important results concerning
the chromatic number of graphons in the dissertation come from [P7]
and [P11], respectively.

Theorem 13. A graphon W is k-colorable if and only if for all finite
graph H of chromatic number k + 1 we have t(H,W ) = 0.

Theorem 14. Suppose H is a graph and W is graphon such that
t(H,W ) = 0. Then W is countably partite.
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In Theorem 22 we shall see another “avoidance” result, this time for
limits of permutations.

Lets turn the the last paper in Part II which concerns fractional
isomorphism. For finite graphs the concept of fractional isomorphism
was introduced by Tinhofer in 1986 [32] as a relaxation of graph iso-
morphism, with many additional favorable features such as a linear
programming formulation and low complexity from the computational
perspective. Remarkably, there are many different looking but equiva-
lent definitions of fractional isomorphism. Grebík and Rocha [13] intro-
duced the concept of fractional isomorphism for graphons and proved
an analogous equivalence of counterparts of all these different charac-
terizations. It follows from one of these characterizations that if (Gn) n
and (Hn) n are two sequences, such that each Gn is fractionally isomor-
phic to Hn, (Gn) n converges in the cut distance to a graphon U and
(Hn) n converges in the cut distance to a graphon W then U and W are
fractionally isomorphic. Answering the main open question from [13],
the main result of [P9] is the converse of this result.

Theorem 15. Suppose that U and W are fractionally isomorphic graphons.
The there exist sequences (Gn) n and (Hn) n of graphs such that each
Gn is fractionally isomorphic to Hn, (Gn) n converges in the cut dis-
tance to a graphon U and (Hn) n converges in the cut distance to a
graphon W .

Part III: Inhomogeneous random structures
from graphons

Theorem 1 provides a tool of studying “any sequence of graphs” using
the theory of graphons. But we can take a dual approach and create
random graph models from graphons, thus studying “typical sequences
of graphs”.

The most basic such model is the inhomogeneous random graph
G(n,W ) for n ∈ N and W ∈ W0.3 This model, introduced in [25]
is defined as follows. The vertex set is V = {1, . . . , n}. We sam-
ple independently points x1, . . . , xn ∈ [0, 1] at random from λ. Then,
independently for each ij ∈

(
V
2

)
, we insert edge ij in G(n,W ) with

3Let us note that the term inhomogeneous random graphs is overused and thus
ambiguous. In other contexts, this term may refer for example to “exponential
random graphs” or “geometric random graphs”.
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probability W (xi, xj). Note that if W is constant-p, we get the bino-
mial Erdős–Rényi random graph G(n, p), arguably the most studied
random discrete structure. Recall also that most problems regarding
G(n, p) are interesting and difficult when p is not a constant but rather
a function p = p(n) going to 0 as n → ∞. This includes the problems of
containment of a fixed graph, connectivity, hamiltonicity or the giant
component, to name a few. This feature of vanishing probabilities is
not available (at least in the basic version) in G(n,W ), as the graphon
W does not change with n. What I find fascinating, however, is that
some graphons W can contain sparser and sparser bits and problems
concerning G(n,W ) have to deal with them with a similar level of dif-
ficulty as in sparse Erdős–Rényi random graphs.

Paper [P10] establishes a limit theorem for the count of fixed-sized
cliques in G(n,W ). To compare, we recall results of Bollobás [5], Ru-
ciński [30], and Nowiscki and Wierman [28] from the 1980s that in
particular establish a central limit theorem for the number of copies
of a fixed-sized clique Kr in G(n, p), where p > 0 is fixed. Here, the
variance is of the order nr−1. In [P10] we establish a similar result
for G(n,W ). It turns out that there are actually four regimes, de-
pending on the graphon W . Let us write Xn for the number of Krs
in G(n,W ).

• If W ≡ 0 or W ≡ 1, then Xn does not have any variance,

• (Xn) satisfies the central limit theorem with variance of the order
nr−0.5,

• (Xn) satisfies the central limit theorem with variance of the order
nr−1,

•
(

Xn−E[Xn]
nr−1

)
converges to a certain chi-square distribution.

Let us note that since the publication of [P10], it has been significantly
extended in [3].

Whereas [P10] deals with fixed-sized cliques in G(n,W ), paper [P11]
deals with the size of the largest clique G(n,W ), denoted ω (G(n,W )).
Early (and easy) results of Matula [27] and Grimmett and McDiarmid [15]
show that for p constant, we have

ω (G(n, p)) = (1 + o(1)) · 2 log2 n

log2(1/p)
.
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Can we get a similarly compact description of ω (G(n,W )) for every
graphon W? The next result from [P11] shows that we cannot.

Theorem 16. Let f : N → R be an function with limn→∞ f(n) = ∞.
Then there exists a graphon W and a sequence of integers ℓ1 < k1 <
ℓ2 < k2 < ℓ3 < k3 < . . . such that asymptotically almost surely,

ω (G(ℓi,W )) < f(ℓi) , and

ω (G(ki,W )) >
ki

f(ki)
.

In plain words, the clique number of G(n,W ) grows arbitrarily
slowly and arbitrarily quickly at the same time! However, we can
still obtain a pretty general result, which covers all graphons with a
strictly positive essential infimum. That is, for each such graphon W ,
we identify a constant κ(W ) ∈ (0,+∞] by

κ(W ) = sup

{
−

2 ∥h∥21∫
(x,y)∈[0,1]2

h(x)h(y) log2 W (x, y)

}
,

where the supremum ranges over all nonnegative functions h ∈ L1([0, 1]).
The main theorem of [P11] is then as follows.

Theorem 17. Suppose that W is a graphon with a strictly positive
essential infimum.

• If κ(W ) < +∞ then asymptotically almost surely, ω (G(n,W )) =
(1 + o(1)) · κ(W ) · log2 n, and

• if κ(W ) = +∞ then asymptotically almost surely, ω (G(n,W )) ≫
log2 n.

We now turn to [P12] which concerns the uniform spanning tree.
Recall that given a connected graph G the uniform spanning tree in
G is just the uniform distribution over the (nonempty) set of all span-
ning spanning trees. The uniform spanning tree (UST) holds signifi-
cant importance in mathematics due to its application in various fields
such as probability theory, graph theory, and statistical physics. In
probability theory, USTs are fundamental objects for studying random
walks and percolation processes. In graph theory, they provide insights
into the structure and connectivity of networks. Moreover, in statisti-
cal physics, USTs serve as models for understanding phase transitions
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and critical phenomena. Most research on the UST has been done on
bounded-degree lattices such as the d-dimensional grid. This line of
research includes the celebrated work on the Schramm–Loewner evo-
lution. In [P12] we look at the UST in dense graphs. This area was
unexplored prior, with two notable exceptions regarding the special
case G = Kn. Firstly, Kolchin [21] and independently Grimmett [14]
proved that the local structure of the UST of Kn (as n → ∞) con-
verges locally the the Galton–Watson branching process with offspring
distribution Poisson(1) conditioned on survival. Here, the notion of
“local convergence” is often also called the “Benjamini–Schramm” con-
vergence. Secondly, Aldous [1, 2] proved convergence in a global sense,
leading to the notion of a “scaling limit” and “the continuum random
tree”. The main result of [P12] generalizes the former result from se-
quence (Kn)n to arbitrary sequence (Gn)n which converge to a given
graphon W .

Theorem 18. Suppose that W is a graphon with a positive minimum
degree. Suppose that (Gn)n is a sequence of connected graphs converging
to W . Then asymptotically almost surely, the USTs of Gn converge
locally to a certain branching process derived from W and denoted τW .

In [P12] we provide an explicit description of τW and based on this
we can also derive some extremal results about the degree distribution
of the UST in dense graphs.

Theorem 19. For every k ∈ N and for every ϵ > 0 there exists n0 ∈ N
such that the following holds. Suppose that G is a connected graph on
n ≥ n0 vertices with minimum degree at least ϵn. Write Lk for the
random variable counting the number of vertices of degree k in a UST
of G. Then

• (if k = 1) P
[
L1 ≤

(
e−1 − ϵ

)
n
]
< ϵ,

• (if k = 2) P
[
L2 ≥

(
e−1 + ϵ

)
n
]
< ϵ,

• (if k ≥ 3) P
[
Lk ≥

(
(k−2)k−2

(k−1)!ek−1 + ϵ
)
n
]
< ϵ.

All these bounds are best possible.

The last two papers in Part III initiate a theory of what we call
“flip processes”. We first cover the foundations given in [P13] and re-
turn applications of these foundations to specific flip processes in [P14]
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later. Suppose that k ∈ N. We write Hk for the set of all 2(
k
2) graphs

on the vertex set {1, . . . , k}. Let R = (DH)H∈Hk
be a collection of

probability distributions on Hk, one distribution for each graph in Hk.
Suppose that G0 is a given graph of order n ≥ k. The flip process with
rule R and initial graph G0 is a discrete time stochastic Markov chain
G0, G1, G2, . . .. For each n ∈ N the graph Gn is defined from Gn−1by
taking a uniformly random k-tuple (v1, . . . , vk) ⊂ V (Gn−1) and replac-
ing the graph H := Gn−1[v1, . . . , vk] by a graph sampled from DH while
keeping all the other edges and nonedges as they were in Gn−1.

Flip processes are hence a broad class of random graph processes,
essentially containing the Erdős–Rényi random graph process and the
triangle removal process. Let us recall these two processes. In the
Erdős–Rényi random graph process, one starts with the edgeless graph
on n vertices, and in each steps turns a uniformly chosen nonedge into
an edge. The process stops after

(
n
2

)
many steps at which point the

graph is complete. In the triangle removal process, one starts with
the complete graph on n vertices, and in each steps removes the three
edges of a uniformly selected triangle. The process stops at a random
time in which the graph is triangle-free. The Erdős–Rényi random
graph process is a common concept, a dynamical version of the Erdős–
Rényi random graph. The triangle removal process was introduced
by Bollobás and Erdős around 1990, and motivated in part by the
offdiagonal Ramsey number R(3, ℓ). Of particular attention was the
question of the stopping time, or equivalently, the number of edges in
the final graph. Work on this question culminated in [4] where it is
shown that the final graph has n3/2+o(1) edges with high probability.

Now consider kER = 2 and both for H = edge and H = nonedge
let DH be the Dirac distribution on the edge. If we consider the cor-
responding flip process RER started from an edgeless graph, we essen-
tially get the Erdős–Rényi random graph process. The only difference
is that the process RER is slowed down in adding individual edges at
random times; this slowdown is almost nonexistent initially but inten-
sifies as the graph gets denser. Next, consider kTR = 3. For H = K3,
let DH be the Dirac distribution on the edgeless graph. For H ̸= K3,
let DH be the Dirac distribution on H. The corresponding flip process
RTR started from a complete graph is a slowed down version of the
triangle removal process.

We want to study the evolution of an initial n-vertex graph in a
flip process with a fixed rule R of order k, as n → ∞ with the lenses
of dense graph limits. It is important to realize that as dense graph

19



limits are sensitive only to changes of Θ(n2) edges and we edit at most(
k
2

)
= O(1) edges in a single step, we will notice an change only in Θ(n2)

steps. The main result of [P13], which we present in a simplified and
somewhat informal way, indeed says that there is a reasonable graphon
desription of a typical evolution of a flip process started from any large
graph.

Theorem 20. Suppose that R is a rule of a flip process. Then there
exist “trajectories” Φ : W0× [0,+∞) → W0 with the following property.
Suppose that T > 0. Suppose that G0 is an n-vertex graph and U
is a graphon such that the graphon representation W0 of G0 satisfies
d□(W0, U) = o(1).

Consider the flip process (Gn)n started from G0. Write Wn for the
graphon representation of Gn. Then with high probability, we have

max
{
d□

(
Wℓ,Φ(U, ℓ/n

2)
)
: ℓ ∈ N ∩

[
0, Tn2

]}
= o(1) .

That is, the theorem relates typical evolution of a discrete stochastic
process to a deterministic analytic trajectory Φ. Let us describe how Φ
is constructed, which is also the key for proving the theorem. Based on
the rule R, we construct a “velocity operator” V : W → W and define
Φ(U, ·) as the solution of the differential equation

d

dt
Φ(U, t) = V (Φ(U, t)) , (4)

with the initial condition Φ(U, 0) = U . The idea of describing a ran-
dom discrete evolution using differential equations is not entirely new.
In particular, Wormald [33] developed a framework of the “differential
equations method” which has been applied to analyze dozens of ran-
domized algorithms and random discrete structures. However, the main
difference is that Wormald’s machinery works with real-valued differ-
ential equations, whereas (4) is a differential equation in the Banach
space W.

In [P13] we establish many properties of trajectories. My favorite
result is a construction (or rather a somewhat nonconstructive argu-
ment) of a periodic trajectory using the Poincaré–Bendixson theorem.

In [P14] we study seven specific families of flip processes, namely
“ignorant”, “balanced stirring”, “complementing”, “extremist”, “mono-
tone”, “component completion”, and “removal” flip processes. For ex-
ample, in the extremist flip process of order k, the sampled graph
H := Gn−1[v1, . . . , vk] is replaced by its complement (that is, edges
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are switched to nonedges and vice versa). In the extremist flip pro-
cess, we replace H by the complete graph Kk if e(H) ≥ 1

2

(
k
2

)
and by

the edgeless graph Ik otherwise. The last mentioned family of removal
flip processes, which generalizes from triangle removal to general F -
removal, is the most interesting one. The sample theorem from [P14]
given below is also the most interesting one mathematically, combining
the compactness theorem and the graph removal lemma in its proof.
In combination with Theorem 20 it suggests that if F0 and G0 are
two graphs which are close in the cut distance and we run the trian-
gle removal flip process either from F0 or from G0 then the resulting
triangle-free graphs will be with high probability close in the cut dis-
tance.

Theorem 21. Consider the triangle removal flip process. Let Φ :
W0 × [0,+∞) → W0 be its trajectories. For each U ∈ W0, define
destination(U) = limt→∞ Φ(U, t). Then the map U 7→ destination(U)
is continuous with respect to the cut distance.

In Part IV: Limits of other discrete struc-
tures

Following the success of the theory of dense graph limits (and the theory
of sparse graph limits which has been developing in parallel), numerous
other limit theories of discrete structures were worked out. A general
theory of “flag algebras” developed by [29] let to solutions of dozens of
problems in extremal combinatorics. However, the limit objects of flag
algebras are abstract and somewhat elusive lacking the explicitness of
graphons.4 One of the most impressive limit theories was developed
by Elek and Szegedy [10] for hypergraphs of a fixed uniformity. The
existence of the limit object was shown by means of nonstandard anal-
ysis, with a combinatorial approach appearing only later [34]. Another
successful limit theory was that of permutations. Here, by a permuta-
tion we mean a bijection π : [n] → [n]. The difference to a notion of
permutations on an abstract n-element set is that the elements of [n]
are equipped with the standard linear order. This linear order is in-
strumental in defining homomorphism densities, which like in the graph
case, define the convergence. That is, for a permutation A : [k] → [k]

4Note that an attempt to make flag albebras more explicit was recently taken
by Coregliano and Razborov [9].
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(with k ≤ n) we define the homomorphism density from A to π by

t(A, π) =
#sets X ∈

(
[n]
k

)
such that π↾X is compatible with A(

n
k

) ,

where the function π↾X : X → [n] is compatible with A if the relative
orders of the images in π↾X and A are the same. The theory of limits of
permutations was worked out by Hoppen, Kohayakawa, Moreira, Ráth,
and Sampaio [18]. The limit objects, called permutons, are Borel prob-
ability measures on [0, 1]2 whose marginals on both coordinates are the
respective 1-dimensional Lebesgue measures. Homomorphism density
extends to permutons as follows. Suppose that Γ is a permuton and A
is as above. Sample k points (x1, y1), . . . , (xk, yk) from Γ independently
at random. Let π be the random permutation defined so that π(i) is the
relative position on the y-coordinate of yh (among y1, . . . , yk), where h
is selected so that the relative position on the x-coordinate of xh is i.
Then define t(A,Γ) = P[A = π].

Paper [P17] deals with permutons having zero density of a fixed
pattern, also called pattern avoiding. This is a limit counterpart of a
long line of research of pattern avoidance in permutations. The most
important fruit of that research is a theorem of Marcus and Tardos [26],
previously known as the Stanley–Wilf conjecture, which asserts that for
any pattern A, the number of A-avoiding permutation on n elements is
exp(O(n)), compared to the factorial growth of all permutations. The
main result of [P17] is that permutons avoiding any pattern must have
1-dimensional structure.

Theorem 22. Suppose that A is a permutation of order k and Γ is a
permuton with t(A,Γ) = 0. Consider the disintegration (Γx)x∈[0,1] of
the measure Γ on the x-coordinate. Then almost every Γx is a convex
combination of at most k − 1 Dirac measures.

This result is a permuton counterpart to a result of Cooper [8].
Also, note that there is some similarity to Theorem 14, although the
proofs are very different. Using Theorem 22, we reprove a permutation
removal lemma of Klimošová and Kráľ [20] which was also reproved by
Fox and Wei [11].

Theorem 23. For every pattern A and every ϵ > 0 there exists δ > 0
so that the following holds. Suppose that π is a permutation of order n
with t(A, π) < δ. Then there exists a permutation τ of order n which
is avoiding A and for which we have

∑n
i=1 |π(i)− τ(i)| < δn2.
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While our proof does not give any effective bounds on δ in terms of A
and ϵ, it is computationally much simpler than that those of Klimošová
and Kráľ and Fox and Wei..

Next, we turn to limits of partial sets (posets) and recall a the-
ory introduced by Janson [19]. Suppose that P is a set of size n
and <P is a partial order on P . We define the homomorphism den-
sity t ((Q,<Q), (P,<P )) from another poset (Q,<Q) (of size k ≤ n) to
(P,<P ) as the probability that a random injective map from Q to P is a
poset homomorphism. As for the space of limit objects, Janson consid-
ered ordered probability spaces (S,F , µ,≺). That is, (S,F , µ) is a prob-
ability space, ≺ is a partial order on S so that {(x, y) ∈ S × S : x ≺ y}
is measurable with respect to F ×F . A poset kernel W : S×S → [0, 1]
is a function such that for x, y, z ∈ S, we have

• if W (x, y) > 0 then x ≺ y, and

• if W (x, y) > 0 and W (y, z) > 0 then W (x, z) = 1.

Janson also extended the definition of homomorphism density from a
finite poset to a poset kernel in a straightforward manner. One of the
main results of [19] is a compactness theorem.

Theorem 24. Suppose that ((Pn, <Pn))n is a sequence of posets of
growing orders. Then there exists a subsequence

(
(Pni , <Pni

)
)
i
, an

ordered probability space (S,F , µ,≺) and a poset kernel W : S × S →
[0, 1] so that

(
(Pni

, <Pni
)
)
i
converges to W .

Answering an open question from [19] the main result of [P16] is
that for (S,F , µ,≺) we can always take the unit interval equipped with
the Lebesgue measure and the standard linear order on R. Working in
this new setting actually leads to the limit being uniquely defined.

We now turn to the last paper in Part IV. Whereas [P16] and [P17]
were contributions to existing limit theories, in [P15] we develop a new
theory of Latin squares. A Latin square is an n × n matrix so that
the entries of every row and every column give a permutation. Like
in the setting of permutations, we work in the ordered setting, that is
the columns of the matrix go from left to right, the rows go from up
and bottom, and certain entries are bigger or smaller than others. The
theory we develop has all features one expects from a limit theory.

• We construct limit objects, called “Latinons”.
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• We define density t(A, ·) of a “pattern” A into finite Latin squares
and into Latinons. Convergence of a sequence (Ln)n of Latin
squares to a Latinon K is defined by limn t(A,Ln) = t(A,K) for
every pattern A.

• We prove the compactness theorem, that is, for every sequence
of (Ln)n of Latin squares of growing orders there exists a subse-
quence (Lni

)i and a Latinon which is its limit.

• We introduce cut distance δ⊠ for Latinons and prove that it is
topologically equivalent to the convergence defined by densities.

• We prove that for every Latinon there exists a sequence of Latin
squares converging to it.

We only detail some items from the above list, referring the reader to
the full text of [P15] for the more technical ones. Let us explain the
notion of densities into Latin squares, which defines the convergence.
A pattern is a k × ℓ matrix whose entries contain numbers {1, . . . , kℓ},
each number exactly once. Given a pattern A of size k× ℓ and a Latin
square L of order n ≥ max(k, ℓ) we define density t(A,L) as follows.
Select a uniformly random set R of k rows of L. Select a uniformly
random set C of ℓ columns of L. Then t(A,L) as the probability that
the relative values of L↾R×C are as in A.

We do not give the definition of Latinons here as it is rather con-
voluted but we will try to hint at least one key element by making a
comparison to graphons. A graphon W : [0, 1]2 → [0, 1] arise as a limit
of adjacency matrices of finite graphs. For each (x, y) ∈ [0, 1]2, the
value W (x, y) corresponds to the proportion of 1s in the adjacency ma-
trix (say, of order n) around the xn-th row and the yn-th column. With
this in mind a Latinon at position (x, y) ∈ [0, 1]2 should record what
goes on in a finite Latin square of order n around the xn-th row and the
yn-th column. This part of the Latin is now much more complex than
in the case of adjacency matrices; rather than just containing 0s and 1s,
it may contain all integers {1, . . . , n}, which we think of after rescaling
by n as numbers in the interval [0, 1]. In particular, the Latinon “at
position (x, y)” should be a probability distribution on [0, 1]. The con-
sideration so far hints to Latinons as functions K : [0, 1]2 → P([0, 1])
(where P([0, 1]) is the set of Borel probability measures on [0, 1]) sat-
isfying some marginal conditions which are limit counterparts to the
defining properties of Latin squares. This is a good starting point, but
the actual limit object is more complicated than that.

24



References
[1] David Aldous. The continuum random tree. I. Ann. Probab.,

19(1):1–28, 1991.

[2] David Aldous. The continuum random tree. III. Ann. Probab.,
21(1):248–289, 1993.

[3] Bhaswar B. Bhattacharya, Anirban Chatterjee, and Svante Jan-
son. Fluctuations of subgraph counts in graphon based random
graphs. Combin. Probab. Comput., 32(3):428–464, 2023.

[4] T. Bohman, A. Frieze, and E. Lubetzky. Random triangle removal.
Adv. Math., 280:379–438, 2015.

[5] Béla Bollobás. Threshold functions for small subgraphs. Math.
Proc. Cambridge Philos. Soc., 90(2):197–206, 1981.

[6] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi.
Convergent sequences of dense graphs. I. Subgraph frequencies,
metric properties and testing. Adv. Math., 219(6):1801–1851, 2008.

[7] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Veszter-
gombi. Convergent sequences of dense graphs II. Multiway cuts
and statistical physics. Ann. of Math. (2), 176(1):151–219, 2012.

[8] Joshua N. Cooper. A permutation regularity lemma. Electron. J.
Combin., 13(1):Research Paper 22, 20, 2006.

[9] L. N. Coregliano and A. A. Razborov. Semantic limits of dense
combinatorial objects. Uspekhi Mat. Nauk, 75(4(454)):45–152,
2020.

[10] Gábor Elek and Balázs Szegedy. A measure-theoretic approach to
the theory of dense hypergraphs. Adv. Math., 231(3-4):1731–1772,
2012.

[11] J. Fox and F. Wei. Permutation property testing under different
metrics with low query complexity. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1618–1637. SIAM, Philadelphia, PA, 2017.

[12] A. Frieze and R. Kannan. Quick Approximation to Matrices and
Applications. Combinatorica, 19(2):175–220, 1999.

25



[13] J. Grebík and I. Rocha. Fractional isomorphism of graphons. Com-
binatorica, 42(3):365–404, 2022.

[14] G. R. Grimmett. Random labelled trees and their branching net-
works. J. Austral. Math. Soc. Ser. A, 30(2):229–237, 1980/81.

[15] G. R. Grimmett and C. J. H. McDiarmid. On colouring random
graphs. Math. Proc. Cambridge Philos. Soc., 77:313–324, 1975.

[16] H. Hatami. Graph norms and Sidorenko’s conjecture. Israel J.
Math., 175:125–150, 2010.

[17] P.E. Haxell and V. Rödl. Integer and fractional packings in dense
graphs. Combinatorica, 21(1):13–38, 2001.

[18] C. Hoppen, Y. Kohayakawa, C. G. T. de A. Moreira, B. Ráth,
and R. M. Sampaio. Limits of permutation sequences. J. Comb.
Theory, Ser. B, 103(1):93–113, 2013.

[19] S. Janson. Poset limits and exchangeable random posets. Combi-
natorica, 31(5):529–563, 2011.

[20] T. Klimošová and D. Král’. Hereditary properties of permutations
are strongly testable. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1164–1173.
ACM, New York, 2014.

[21] V. F. Kolchin. Branching processes, random trees, and a general-
ized scheme of arrangements of particles. Mathematical notes of
the Academy of Sciences of the USSR, 21(5):386–394, May 1977.

[22] J. Komlós. Tiling Turán theorems. Combinatorica, 20(2):203–218,
2000.

[23] D. Král’, T. Martins, P. P. Pach, and M. Wrochna. The step
Sidorenko property and non-norming edge-transitive graphs. J.
Combin. Theory Ser. A, 162:34–54, 2019.

[24] L. Lovász. Large networks and graph limits, volume 60 of American
Mathematical Society Colloquium Publications. American Mathe-
matical Society, Providence, RI, 2012.

[25] L. Lovász and B. Szegedy. Limits of dense graph sequences. J.
Combin. Theory Ser. B, 96(6):933–957, 2006.

26



[26] A. Marcus and G. Tardos. Excluded permutation matrices and the
Stanley–Wilf conjecture. J. Comb. Theory, Series A, 107(1):153–
160, 2004.

[27] D. W. Matula. The largest clique size in a random graph. Techni-
cal report, Department of Computer Science, Southern Methodist
University, 1976.

[28] Krzysztof Nowicki and John C. Wierman. Subgraph counts in ran-
dom graphs using incomplete U -statistics methods. In Proceedings
of the First Japan Conference on Graph Theory and Applications
(Hakone, 1986), volume 72, pages 299–310, 1988.

[29] A. A. Razborov. Flag algebras. J. Symbolic Logic, 72(4):1239–
1282, 2007.

[30] Andrzej Ruciński. When are small subgraphs of a random graph
normally distributed? Probab. Theory Related Fields, 78(1):1–10,
1988.

[31] J. Skokan and L. Thoma. Bipartite subgraphs and quasi-
randomness. Graphs Combin., 20(2):255–262, 2004.

[32] G. Tinhofer. Graph isomorphism and theorems of Birkhoff type.
Computing, 36(4):285–300, 1986.

[33] Nicholas C Wormald. Differential equations for random processes
and random graphs. Ann. Appl. Probab., pages 1217–1235, 1995.

[34] Yufei Zhao. Hypergraph limits: A regularity approach. Random
Structures & Algorithms, 47(2):205–226, 2015.

27


