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Abstract

Author’s humble contribution to the research area of quantum
communication complexity is presented.

A core goal in the field is identifying those communication
regimes where the laws of quantum mechanics offer qualitative
advantage in comparison to the power of classical models. One
of the main differences between communication models is their
topology – namely, the layout of communication channels. A
number of works covered in Part II of this dissertation can be
viewed as a sequence of steps aiming for an ultimate separation,
that is, an example of a communication problem that can be solved
efficiently in the weakest quantum communication model, while
being hard for the strongest classical one.

It is also interesting to understand the limitations of quantum
communication. Two woks that are covered in Part III of this dis-
sertation bound the possible advantage of quantum communication
over the classical one.

Another endeavour of quantum communication complexity is
characterising the complexity of concrete representative problems in
various models of interest. The two most important communication
problems are Equality (Eq) and Disjointness (Disj), and Part IV of
this dissertation covers works that analyse the complexity of these
two problems in various regimes.

Besides the physical nature of the available communication chan-
nels (either classical or quantum) and their layout, communication
models can differ in terms of the available shared resources : either
classical randomness or quantum entanglement. Several works that



study more subtle aspects of these resources are covered in Part V
of this dissertation.

Quantum protocols are a special case of quantum algorithms,
and we know how to prove that some quantum protocols outperform
exponentially the best classical ones. This can be useful in those
computational scenarios where quantum advantage over the classical
counterpart is desired. In Part VI of this dissertation we cover
several works where the study of quantum protocols was prolific
in the fields of computational complexity, computational learning
theory and computational cryptography.

Most of the works covered by this dissertation are forming
natural sequences of incremental improvements, several of those
sequences might even be seen as having converged to their natural
goals. It is author’s hope that this presentation will highlight
some of the remaining interesting questions, as well as lead to new
insights into them.
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Chapter 1

Introduction

The observed reality may not be classical. Among the non-classical
physical theories of nowadays, quantum mechanics is, probably, the
most adequate: on the one hand, it is very accurate in predicting
the probabilities of experimental outcomes (and there are reasons to
believe that this is the best we can hope for prophesy-wise); on the
other hand, quantum mechanics is compatible with other plausible
physical theories in the regimes that we have tested experimentally
or can hope to be able to test any time soon.

The significance of understanding quantum mechanics seems
to be at least two-fold. On the one hand, the theory is among the
frontiers of our observation-predicting capabilities, and the philo-
sophical reflection of the possibility of a priori physical knowledge
has led to some of the deepest ontological and epistemological doc-
trines so far. On the other hand, quantum – as opposed to classical
– mechanics is intimately related to the problem of causation, which
might be not as fundamental as the problem of a priori synthetic
knowledge, but is nevertheless very important.

Thus, we are interested in identifying and investigating those
experimental scenarios where the predictions of quantum mechanics
are, so to say, most non-classical. This problem makes sense, in
particular, in the computational context: e.g., we may ask whether
computational devices that are allowed to perform every operation
admitted by quantum mechanics are qualitatively stronger than
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– apparently, more limited – their classical counterparts. While
addressing this question, we would naturally like to accept only the
most fundamental and intuitively-indisputable assumptions in the
analysis.

1.1 Communication complexity

Many basic questions in computer science are still destitute of
any mathematical understanding, which often results in making
a priori assumptions that do not represent any fundamental intu-
ition. Among the most yawning gaps is the field of computational
complexity : in the original and most natural form it asks whether
a given computational problem has an efficient algorithm in the
model of Turing machines – while the researchers have collected
quite a few impressive algorithms, the current ability to prove that
a problem admits no efficient solution on a Turing machine does not
exceed a couple of somewhat insightful but mathematically-trivial
imitations of Cantor’s diagonal argument.

A possible way to conduct well-grounded research in compu-
tational complexity nowadays is to study simpler computational
models.1 Among the richest models that we already know how to
analyse – at least, in some cases – is the setting of communication
complexity. Here is a brief informal introduction of its central
concepts:
• In the model of bipartite communication there are two players,
Alice and Bob, who receive one portion of input each: Alice
gets x and Bob gets y. Their goal is to use the allowed type
of communication (as described next) in order to compute
an answer that would be correct with respect to the received
pair (x, y).
• The three principal bipartite layouts are two-way (interactive)
communication, one-way communication and simultaneous
message passing (SMP). In the first case the players can ex-

1 Here simplicity does not necessarily mean being more limited computa-
tionally, but rather refers to informal mathematical tractability.
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change messages interactively before answering, in the second
case only Alice can send a message to Bob (who then answers),
in the third case both Alice and Bob send one message each
to a third participant – the referee (who then answers).
• Communication problems determine which answers are cor-
rect for the given input. The three main types of problems
are total functions, partial functions and relations : in the first
case there is exactly one correct answer for each possible pair
of input values, and the set of those pairs equals the direct
product of possible inputs of Alice and possible inputs of Bob;
the second case is similar, but the set of possible inputs can
be arbitrary; in the third case multiple correct answers for
the same input values are allowed.
• An efficient solution is a communication protocol where the
players use at most poly-logarithmic (in the input length)
amount of communication and produce a right answer with
high confidence.
• Communication models can be strengthened by shared ran-
domness, which corresponds to allowing the players to use
mixed strategies (this can be helpful only in the weakest among
the layouts – the SMP), or by shared entanglement, which
allows the players to share any (input-independent) quantum
state and use it while running the protocol.2

2 Sometimes in this work we call a model bare to emphasise that it allows
no shared resources.
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Chapter 2

Quantum communication
complexity

Quantum communication complexity has been an active area of
research over the last few decades. Among numerous results in
the field, the most relevant to the context of demonstrating super-
classical capabilities of quantum models are the following:

• In 1998 a partial function was demonstrated [BCW98] for
which in zero-error regime quantum protocols had exponen-
tial advantage over the classical ones (both one-way and
interactive).
• In 1999 a partial function was demonstrated [Raz99] that
had an efficient quantum two-way protocol, but no efficient
classical two-way protocol.
• In 2001 a total function was demonstrated [BCWdW01] that

had an efficient quantum simultaneous-messages protocol with-
out shared randomness, but no efficient classical simultaneous-
messages protocol without shared randomness.
• In 2004 a relation was demonstrated [BYJK04] that had

an efficient quantum simultaneous-messages protocol without
shared randomness, but no efficient classical one-way protocol.
• In 2006 a partial function was demonstrated [GKK+08] that
had an efficient quantum one-way protocol, but no efficient
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classical one-way protocol.
• In 2007 amultipartite relational problem was demonstrated [GP08]

that had an efficient quantum simultaneous-messages protocol,
but no efficient classical simultaneous-messages protocol or
classical non-interactive one-way protocol.
• In 2008 a relation was demonstrated [Gav08a] with an efficient
quantum one-way protocol, but no efficient classical two-way
protocol.
• In 2010 a partial function was demonstrated [KR11] with an

efficient quantum one-way protocol, but no efficient classical
two-way protocol.
• In 2016 a partial function was demonstrated [Gav20b] with an

efficient quantum simultaneous-messages protocol with shared
entanglement, but no efficient classical two-way protocol.
• In 2017 a partial function was demonstrated [Gav19] with

an efficient quantum simultaneous-messages protocol without
shared randomness, but no efficient classical simultaneous-
messages protocol, even with shared randomness.
• In 2020 a relation was demonstrated [Gav20a] with an effi-

cient quantum simultaneous-messages protocol without shared
randomness, but no efficient classical two-way protocol.

Among the works listed above there are a few that represent the
research conducted by the author and will be covered in Part II of
this dissertation.

A core concrete goal in the field is identifying those communi-
cation regimes where the predictions of quantum mechanics are as
far as possible from those of classical mechanics. The separations
listed above can be viewed as a sequence of efforts aiming for an
ultimate separation – a communication problem that can be solved
efficiently in the weakest quantum communication model, while
being hard for the strongest classical one.

Part II of this dissertation start with [GKK+08], where the
same regime of one-way communication is considered in both quan-
tum and classical cases and the supremacy of the former is argued.
In [Gav08a] a stronger separation is given – namely, a problem is
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presented for which a weaker layout of quantum communication
– namely, one-way – offers exponential advantage over a stronger
layout of classical communication – namely, two-way. In [Gav20b]
the layout gap is made even wider: the weakest bipartite layout of
quantum communication – namely, simultaneous message passing
(SMP) – exhibits exponential advantage over two-way classical com-
munication. The main drawback of [Gav20b] was the need of shared
entanglement in order for an efficient quantum protocol to exist,
and this has been addressed in the most recent separation [Gav20a]
from the above list: there a relational problem is given that is easy
for quantum SMP, but hard for classical two-way communication.

2.1 Limitations of quantum communication

Investigating the limitations of quantum communication models
is very interesting. Although there are some known results that
bound the possible advantage of quantum communication over the
classical one, here our understanding is much more limited.

The following two woks represent author’s research and will be
presented in Part III of this dissertation:
• In 2005 two bipartite relational problems were demonstrated [GKRdW09]

that had the following properties:
– the first relation had an efficient classical simultaneous-
messages protocol with shared randomness, but no effi-
cient quantum simultaneous-messages protocol without
shared randomness – this implied that quantum com-
munication is, in general, not strong enough to replace
shared randomness in efficient classical simultaneous-
messages protocols;

– the second relation had an efficient classical simultaneous-
messages protocol with shared entanglement, but no effi-
cient quantum simultaneous-messages protocol without
shared entanglement, even with shared randomness – this
implied that shared entanglement, even combined with
classical communication, can be qualitatively stronger
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than quantum communication.
• In 2008 it was proved [GRdW08] that the model of simulta-
neous messages where one party is quantum and the other is
classical could never be qualitatively stronger than the model
of classical simultaneous message passing with respect to func-
tional problems – as opposed to the case of relational problems,
where the quantum-classical model was already known to be
exponentially stronger than its classical counterpart in some
cases.

2.2 Quantum communication complexity of
concrete problems

The results mentioned so far can be viewed as structural : they re-
flect the qualitative relation of the power of the analysed quantum
communication models and their classical counterparts. Another
endeavour of quantum communication complexity is characteris-
ing the complexity of concrete representative problems in various
models of interest.

Arguably, the two most important and widely studied commu-
nication problems are

• Equality (Eq), where Alice receives X ∈ {0, 1}n, Bob receives
Y ∈ {0, 1}n and their purpose is to decide whether X = Y,
and
• Disjointness (Disj), where Alice receives X ⊆ [n], Bob receives
Y ⊆ [n] and their purpose is to decide whether X ∩ Y = ∅.

Both Eq and Disj have been a subject of author’s research:

• Computing Eq(X ,Y) is easy in any randomised model that
allows at least one message to be sent by Alice to Bob (or vice
versa) – that is, analysing its communication complexity can
be non-trivial (and in fact is often rather challenging) only
in various SMP-regimes (one such example is the quantum-
classical regime that was analysed in [GRdW08], as addressed
above). In [GBK15b] we develop a new lower bound method
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for analysing the complexity of Eq, which allows us to obtain
the following:
– the tight lower bounds of Ω(

√
n) for both Eq and its nega-

tion in the non-deterministic version of the quantum-
classical SMP, where Merlin is also quantum – this is
the strongest known version of SMP where the complex-
ity of these problems remain high (previously known
lower-bound techniques seem to be insufficient for this);

– a unified view of the communication complexity of both
Eq and its negation, allowing to obtain tight characterisa-
tion in all previously studied and a few newly introduced
versions of SMP, including all possible combination of
either quantum or randomised Alice, Bob and Merlin in
the non-deterministic case.

In the same paper [GBK15b] we presented new protocols
for both Eq and its negation that achieved optimal trade-off
complexities in some asymmetric versions of non-deterministic
quantum-classical SMP.
• In [GBK15a] we studied the effect that the amount of corre-
lation in the input distribution had on the communication
complexity. In particular, we gave a tight characterisation
of both the randomised and the quantum communication
complexity of Disj under distributions with mutual informa-
tion k, showing that it was, respectively, Θ

(√
n(k + 1)

)
and

Θ̃
(

4
√

n(k + 1)
)
for all 0 ≤ k ≤ n.

These two works will be presented in Part IV of this dissertation.

2.3 Investigating subtle aspects of quantum
communication protocols

Besides the physical nature of the available communication channels
(either classical or quantum) and their layout (SMP, one-way or
two-way), communication models can differ in several other aspects.
A very important parameter of a model is the availability of shared
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resources (randomness or entanglement): as we saw in the beginning
of this chapter, it can severely affect the resulting model strength.

There is a theorem by Newman [New91] stating that the num-
ber of shared random bits required for solving any communication
problem with any constant-bounded error can be at most loga-
rithmic in the input length. In [Gav08b] we proved that the same
was not true with respect to the bits of entanglement: We pre-
sented a wide range of tight – up to poly-logarithmic factors –
complexity trade-off evaluations that demonstrated the dependence
between the available number of the bits of entanglement and the
corresponding communication complexity. It followed that some
communication problems required nΩ(1) bits of entanglement for
their asymptotically-optimal solution.

In [GIW13] we studied the role of shared randomness in the
context of multi-party number-in-hand SMP communication. This
setting demonstrated some interesting properties that had no direct
analogues in the two-party regimes, both classical and quantum.
Similarly to the bipartite case, here quantum communication cannot,
in general, replace shared randomness; on the other hand, for k ≥ 3
players the separations of [GIW13] are qualitatively stronger than
the corresponding bipartite results (as discussed in Section 2.1):

• in the two-party case only a relational communication prob-
lem is known where shared randomness cannot be efficiently
replaced by quantum communication, and for k ≥ 3 we con-
struct a partial function with such properties;
• in the two-party case the advantage of classical communica-
tion with shared randomness can be at most exponential in
terms of the resulting complexity, while for k ≥ 3 we show a
gap of O(1) vs. nΩ(1): in particular, unlike in the bipartite
case, it is not in general possible to use quantum communi-
cation for efficient simulation even of a three-bit three-party
classical protocol with shared randomness.

A classical SMP-protocol with shared randomness can be re-
placed by a quantum SMP-protocol with at most exponential com-
plexity overhead, the corresponding technique is called quantum
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fingerprinting [BCWdW01, Yao03]. In [GKdW06] we studied this
technique in detail and demonstrated some of its strengths and
weaknesses:

• it turned out that every many-round quantum protocol with
unlimited shared entanglement could be simulated by a quan-
tum protocol using neither shared randomness nor entangle-
ment, with the resulting complexity overhead still being at
most exponential;
• on the other hand, we tightly characterised the power of the
quantum fingerprints by making a connection to arrange-
ments of homogeneous half-spaces with maximal margin – a
notion that had been studied in the context of computational
learning theory; we used this correspondence between the
two notions to prove that for almost all functions quantum
fingerprinting protocols were exponentially worse even than
classical deterministic protocols.

Works [GKdW06, Gav08b, GIW13] are presented in Part V of
this dissertation.

2.4 Using quantum communication protocols
in other computational scenarios

Quantum communication protocols are a special case of quantum
algorithms, and we know how to prove that some quantum protocols
outperform exponentially the best classical ones. This makes such
protocols potentially useful in various quantum computational sce-
narios, where qualitative advantage over the classical counterparts
is desired.

• In [CGJ09] we gave a protocol for a setting, closely reminding
the SMP model: Alice and Bob were responding to random in-
put values and it was possible to confirm that their responses
were not maliciously collaborative in certain well-defined sense
– even if the players were sharing entanglement (which they
did not need for an honest action but could use in a conspir-
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acy). That allowed us to make some interesting conclusions
regarding the expressive power of a proof system where two
possibly-dishonest provers could use shared entanglement in
order to improve their cheating abilities.
• Computational learning theory is a mathematical study of

protocols where a student algorithm interacts with a teacher
oracle in order to deduce some knowledge. In [Gav12b] we
defined a new model of quantum learning, where in order to
be considered successful, the student had to be able to answer
a polynomial number of testing queries. We demonstrated a
relational concept class that was efficiently learnable in that
model, while in any reasonable classical model exponential
amount of training data would be required: that gave the first
proof of the qualitative superiority of quantum over classical
learning. The construction in [Gav12b] was based on the
analysis of a special regime of one-way communication, which
we called single-input mode, where Bob received no input:
somewhat surprisingly, in the context of relational problems
this regime became rather non-trivial and offered new insight
into the framework of computational learning.
• The notion of quantum money seems to have been proposed
with some engineering considerations in mind; nevertheless,
it provides a rather natural challenge for theoretical investiga-
tion of quantum mechanics, as a classical construction is easily
seen to be impossible: The goal is to design a (quantum) asset
protocol, where genuineness would be guaranteed uncondition-
ally by the irreversibility of certain evolutions in accordance
with the assumed physical laws. In [Gav12a] we presented a
quantum money scheme, where the asset-verification proce-
dure only needed classical communication with a bank (all
previously-known schemes had required a quantum commu-
nication channel for that). Both the construction and its
analysis strongly relied on the earlier results from the area
of quantum communication complexity: intuitively, the quali-
tative supremacy of certain one-way quantum protocol over
any classical protocol was converted into the unconditional
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security of the proposed quantum money scheme.
• In [GI13] we introduced a new type of primitive that we called
hiding fingerprints. This was a mapping of binary strings of
length n to d << n qubits, such that
– given any string y and a fingerprint of x, one could

decide with high confidence whether x = y;
– given a fingerprint of x, at most o(1) bits of information

about x could be extracted.
These two requirements may even seem contradictory, and
it is easy to see that classical schemes like that are not pos-
sible. We presented several quantum hiding fingerprinting
schemes, achieving different combinations of the equality-
testing confidence and the string-concealing confidentiality,
and we demonstrated optimality of our constructions. Hiding
fingerprints are naturally viewed as one-way protocols for
the equality function (Eq) that must obey the additional
confidentiality requirements: both the constructions and their
analysis in [GI13] stemmed from this connection to quantum
communication complexity.

Works [CGJ09, Gav12b, Gav12a, GI13] are presented in Part VI
of this dissertation.
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Chapter 3

Conclusions and further
research

The most recent work covered by this dissertation is [Gav20a]
(Chapter II.6). It demonstrates that quantum SMP, which is the
weakest reasonable quantum model, can qualitatively outperform
classical two-way communication, which is the strongest model of
feasible classical communication.

What interesting questions are still worth asking?

• The problem that is analysed in [Gav20a] is a relation –
that is, allowing multiple correct answer to the same pair of
input values. It remains open to understand what are the
strongest separations achievable via the more restricted types
of communication problems – namely, (partial) functions and
total functions (see Chapter II.6 for details).
• A weaker form of the above question is the following: Is this

true that a quantum simultaneous-messages protocol cannot
exponentially outperform a classical two-way protocol when
that communication problem is a total function?
• One of the known limitations of quantum communication is

given in [GKRdW09] (Chapter III.1): there it is shown that
quantum communication is, in general, not strong enough to
replace shared randomness in efficient classical simultaneous-



16 Publications presented in the dissertation

messages protocols. The communication problem that is
analysed in order to demonstrate this is also a relational one.
If the communication problem is functional, is it still the case
that shared randomness can give qualitative advantage to
a classical SMP-protocol over a quantum one that does not
have access to shared randomness?

These and some other remaining questions can be viewed as
rather detail-oriented: in particular, they are focused on the re-
stricted types of communication problems, namely partial and total
functions. It seems that the majority of the fundamental problems
related to bipartite quantum communication complexity have now
been resolved by the joint efforts of the scientific community. While
author’s humble contribution to that lucky venture is presented
by the dissertation, it is also his hope that some of the remaining
important questions will be highlighted and new insight will come
up as a result of this writing.
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