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1 Introduction: Compressible heat conduct-

ing Newtonian fluid

We shall briefly introduce the models coming from the continuum me-
chanics and thermodynamics which we study later. More detailed informa-
tion can be found, e.g., in the monographs [Gurtin 1991], [Gallavotti 2002]
or [Lamb 1993].

We consider the three fundamental balance laws: the balance of mass,
the balance of linear momentum and the balance of total energy. Using the
so-called Eulerian description (which is commonly used for equations of fluid
dynamics) we have in (0, T )× Ω

∂ϱ

∂t
+ div(ϱu) = 0,

∂(ϱu)

∂t
+ div(ϱu⊗ u)− divT = ϱf ,

∂(ϱE)

∂t
+ div(ϱEu) + div q− div(Tu) = ϱf · u.

(1.1)

The classical formulation of these equations is actually not what we are going
to deal with in this thesis. We shall work with weak or variational entropy
solutions. These formulations, stated later in the thesis, can be derived
directly from the integral formulation of the balance laws. Therefore we do
not need to work with the classical formulation of the balance laws, however,
it is common to formulate the balance laws in the differential form even
though their weak formulation is considered.

For simplicity, we assume that the spatial domain Ω ⊂ RN , N = 2 or 3,
is bounded and fixed. We shall mostly deal with the case N = 3, however,
in some cases we also consider N = 2. Above, ϱ: (0, T ) × Ω → R+ is the
density of the fluid, u: (0, T )×Ω → RN is the velocity, E: (0, T )×Ω → R+

is the specific total energy , T: (0, T ) × Ω → RN×N is the stress tensor, q:
(0, T )×Ω → RN is the heat flux, and the given vector field f : (0, T )×Ω → RN

denotes the external volume force. Recall that E = 1
2
|u|2 + e, where 1

2
|u|2

is the specific kinetic energy and e is the specific internal energy. Generally,
the balance of the angular momentum should also be taken into account
together with (1.1). However, if we do not assume any internal momenta
of the continuum, it can be verified that as a consequence of the angular
momentum balance the stress tensor T must be symmetric which we assume
in what follows.
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We take (as commonly used) for our basic thermodynamic quantities
the density ϱ and the thermodynamic temperature ϑ. Therefore all other
quantities, i.e., the stress tensor T, the specific internal energy e and the
heat flux q are given functions of t, x, ϱ, u and ϑ. The standard assumptions
from the continuum mechanics yield that

T = −p(ϱ, ϑ)I+ S(ϱ,D(u), ϑ), (1.2)

where I denotes the unit tensor, the scalar quantity p (a given function of
the density and temperature) is the pressure, D(u) = 1

2
(∇u + ∇uT ) is the

symmetric part of the velocity gradient and the tensor S is the viscous part
of the stress tensor. We consider only linear dependence of the stress tensor
on the symmetric part of the velocity gradient. This, together with the
assumption that the viscosities are density independent leads to

S(D(u), ϑ) = µ(ϑ)
(
2D(u)− 2

N
divu I

)
+ ξ(ϑ) divu I. (1.3)

The scalar functions µ(·) > 0 and ξ(·) ≥ 0 are called the shear and the bulk
viscosities. We shall study the situations with µ(ϑ) ∼ (1 + ϑ)a a Lipschitz
continuous function and ξ(ϑ) ≤ C(1+ϑ)a a continuous function for 0 ≤ a ≤ 1
and C > 0. For the pressure, we mostly consider the gas law of the form

p(ϱ, ϑ) = (γ − 1)ϱe(ϱ, ϑ), (1.4)

a generalization of the law for the monoatomic gas, where γ = 5
3
. In general,

the value 5
3
is the highest physically interesting value and for all other gases

we should take 1 ≤ γ ≤ 5
3
, cf. [Elizier et al 1996].

We also sometimes replace assumption (1.4) by

p(ϱ, ϑ) = ϱγ + ϱϑ, e(ϱ, ϑ) =
1

γ − 1
ϱγ−1 + cvϑ, with cv > 0, (1.5)

whose physical relevance is discussed in [Feireisl 2004]. The pressure and the
specific internal energy from (1.5) are in fact a simplification of (1.4) which
still contains the same asymptotic properties and hence also leads to the
same main mathematical difficulties as the more general model (1.4).

The heat flux is assumed to fulfil the Fourier law

q = q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ (1.6)
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with the heat conductivity κ(ϑ) ∼ (1 + ϑ)m for some m > 0.
To get a well posed problem, we must prescribe the initial conditions

ϱ(0, x) = ϱ0(x), (ϱu)(0, x) = m0(x), ϑ(0, x) = ϑ0(x) (1.7)

in Ω and the boundary conditions on ∂Ω. We restrict ourselves to the fol-
lowing simple cases. For the heat flux, we take

−q · n+ L(ϑ)(ϑ−Θ0) = 0 (1.8)

and for the velocity we consider either the homogeneous Dirichlet boundary
conditions

u = 0 (1.9)

or the (partial) slip boundary conditions (sometimes also called the Navier
boundary conditions)

u · n = 0, (Sn)× n+ αu× n = 0. (1.10)

Above, n denotes the external normal vector to ∂Ω, Θ0: (0, T ) × ∂Ω →
R+ is the external temperature, L(ϑ) ∼ (1 + ϑ)l, a continuous function,
characterizes the thermal insulation of the boundary, and α ≥ 0 is the friction
coefficient which is for simplicity assumed to be constant. Since in what
follows we consider only the steady or time-periodic problems, we cannot
assume the boundary to be at the same time thermally (i.e. zero heat flux)
and mechanically insulated as the set of such solutions would be quite trivial,
cf. [Feireisl Pražák 2010].

The Second law of thermodynamics implies the existence of a differen-
tiable function s(ϱ, ϑ) called the specific entropy which is (up to an additive
constant) given by the Gibbs relation

1

ϑ

(
De(ϱ, ϑ) + p(ϱ, ϑ)D

(1
ϱ

))
= Ds(ϱ, ϑ).

Due to (1.4) and (1.1), it is not difficult to verify, at least formally, that the
specific entropy obeys the entropy equation

∂(ϱs)

∂t
+ div(ϱsu) + div

(q
ϑ

)
=

S : ∇u

ϑ
− q · ∇ϑ

ϑ2
. (1.11)
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On this level, equation (1.11) is fully equivalent with the total energy
equality (1.1)3 and can replace it. Another equivalent formulation is the
internal energy balance in the form

∂(ϱe)

∂t
+ div(ϱeu) + div q+ p divu = S : ∇u.

It can be deduced easily from the total energy balance (1.1)3 subtracting the
kinetic energy balance, i.e., (1.1)2 multiplied by u. Indeed, at the level of
classical solutions such computations are possible; later on, on the level of
weak solutions, these formulations may not be equivalent.

It is also easy to verify that the functions p and e are compatible with
the existence of entropy if and only if they satisfy the Maxwell relation

∂e(ϱ, ϑ)

∂ϱ
=

1

ϱ2

(
p(ϱ, ϑ)− ϑ

∂p(ϱ, ϑ)

∂ϑ

)
. (1.12)

Note that the choice (1.5) fulfils it. Assuming relation (1.4), if the pressure
function p ∈ C1((0,∞)2), then it has necessarily the form

p(ϱ, ϑ) = ϑ
γ

γ−1P
( ρ

ϑ
1

γ−1

)
, (1.13)

where P ∈ C1((0,∞)).
We shall assume that

P (·) ∈ C1([0,∞)) ∩ C2((0,∞)),
P (0) = 0, P ′(0) = p0 > 0, P ′(Z) > 0, Z > 0,

lim
Z→∞

P (Z)

Zγ
= p∞ > 0,

0 <
1

γ − 1

γP (Z)− ZP ′(Z)

Z
≤ c7 <∞, Z > 0.

(1.14)

For more details about (1.4) and about physical motivation for assumptions
(1.14) see e.g. [Feireisl Novotný 2009, Sections 1.4.2 and 3.2].

In what follows we shall now deal with the steady version of system (1.1),
i.e., we consider the following system of equations

div(ϱu) = 0,

div(ϱu⊗ u)− div S+∇p = ϱf ,

div(ϱEu) + div q− div(Su) + div pu = ϱf · u
(1.15)
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with the boundary conditions (1.8) and either (1.9) or (1.10). The initial
conditions are not relevant in this case, on the other hand, we must prescribe
the total mass of the fluid ∫

Ω

ϱ dx =M > 0. (1.16)

Recall that, on the level of smooth solutions with strictly positive temper-
ature, the total energy balance (together with the momentum balance and
the continuity equation) is equivalent with either the internal energy balance

div(ϱeu) + div q+ p divu = S : ∇u (1.17)

or the entropy balance

div(ϱsu) + div
(q
ϑ

)
=

S : ∇u

ϑ
− q · ∇ϑ

ϑ2
; (1.18)

in both cases, we must consider them together with the momentum balance
and the continuity equation.

We aim at studying existence of solutions to this problem without any
restriction on the size of the data. It requires that we deal with the weak
solutions (or even weaker notion). These solutions may be non-unique and
their existence may depend on

• the values of the parameters γ and m

• the choice of the boundary conditions (1.9) or (1.10)

• the type of the solutions (as explained in the next section).

2 Mathematical theory for steady compress-

ible Navier–Stokes–Fourier system

2.1 Definitions of solutions for different formulations

Our aim is to study the existence of solutions without any restriction
on the size of the data and keep the regularity assumptions on the data as
general as possible. This leads us naturally to the notion of weak solution
(or, as explained below, variational entropy solution). Before dealing with the
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formulations allowing very low exponent γ, we introduce a definition based on
the internal energy balance, where we can obtain relatively regular solutions
for a certain range of γ. We consider the Navier boundary conditions (1.10)
for the velocity, assume the viscosities to be constant (i.e., we take a = 0
below (1.3)) and use the pressure law (1.5).

We use standard notation for the functions spaces (Lebesgue, Sobolev or
spaces of continuous or continuously differentiable functions). We further
denote

W 1,p
n (Ω;R3) = {u ∈ W 1,p(Ω;R3);u · n = 0 in the sense of traces}.

Similarly the space C1
n(Ω;R

3) contains all differentiable functions up to the
boundary of Ω with zero normal trace on ∂Ω. Then we have

Definition 1 (Weak solution for internal energy formulation.) The
triple (ϱ,u, ϑ) is called a weak solution to system (1.15)1−2, (1.17), (1.16),

(1.3), (1.5), (1.6), (1.8) and (1.10) if ϱ ∈ L
6γ
5 (Ω), u ∈ W 1,2

n (Ω;R3), ϑ ∈
W 1,r(Ω) ∩ L3m(Ω) ∩ Ll+1(∂Ω), r > 1 with ϱ|u|2 ∈ L

6
5 (Ω), ϱuϑ ∈ L1(Ω;R3),

S(D(u)) : D(u) ∈ L1(Ω), ϑm∇ϑ ∈ L1(Ω;R3). Moreover, the continuity equa-
tion is satisfied in the weak sense∫

Ω

ϱu · ∇ψ dx = 0 ∀ψ ∈ C1(Ω), (2.19)

the momentum equation holds in the weak sense∫
Ω

(
− ϱ(u⊗ u) : ∇φφφ− p(ϱ, ϑ) divφφφ+ S(D(u)) : ∇φφφ

)
dx

+α

∫
∂Ω

u ·φφφ dS =

∫
Ω

ϱf ·φφφ dx ∀φφφ ∈ C1
n(Ω;R

3),
(2.20)

and the internal energy balance holds in the weak sense∫
Ω

(
κ(ϑ)∇ϑ− ϱϑu

)
· ∇ψ dx+

∫
∂Ω

L(ϑ)(ϑ−Θ0)ψ dS

=

∫
Ω

(
S(D(u)) : ∇u+ ϱϑ divu

)
ψ dx ∀ψ ∈ C1(Ω).

(2.21)

Note that we used the fact that in the weak formulation of the internal
energy balance, the cold pressure terms are cancelled with the cold internal
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energy terms. This is, at least formally, always true, but it requires certain
integrability of the density. Since we deal with this definition only for γ > 3
later on, these terms cancel even for weak solutions.

Next we consider either the total energy balance formulation (which leads
to the weak formulation). The definitions for the Dirichlet and Navier bound-
ary conditions slightly differ, therefore we present both. In both cases, we
consider either (1.5) or (1.4) with (1.12)–(1.14) and as above, we must pre-
scribe the total mass (1.16).

Definition 2 (Total energy formulation for Dirichlet b.c.) The triple
(ϱ,u, ϑ) is called a weak solution to system (1.15), (1.3), (1.4), (1.6), (1.8),

(1.9) and (1.16), if ϱ ∈ L
6γ
5 (Ω),

∫
Ω
ϱ dx = M , u ∈ W 1,2

0 (Ω;R3), ϑ ∈
W 1,r(Ω) ∩ L3m(Ω) ∩ Ll+1(∂Ω), r > 1 with ϱ|u|2 ∈ L

6
5 (Ω), ϱuϑ ∈ L1(Ω;R3),

S(D(u), ϑ)u ∈ L1(Ω;R3), ϑm∇ϑ ∈ L1(Ω;R3), and∫
Ω

ϱu · ∇ψ dx = 0 ∀ψ ∈ C1(Ω), (2.22)

∫
Ω

(
− ϱ(u⊗ u) : ∇φφφ− p(ϱ, ϑ) divφφφ+ S(D(u), ϑ) : ∇φφφ

)
dx

=

∫
Ω

ϱf ·φφφ dx ∀φφφ ∈ C1
0(Ω;R

3),
(2.23)

∫
Ω

−
(1
2
ϱ|u|2 + ϱe(ϱ, ϑ)

)
u · ∇ψ dx =

∫
Ω

(
ϱf · uψ + p(ϱ, ϑ)u · ∇ψ

)
dx

−
∫
Ω

((
S(D(u), ϑ)u

)
· ∇ψ + κ(·, ϑ)∇ϑ · ∇ψ

)
dx

−
∫
∂Ω

L(ϑ)(ϑ−Θ0)ψ dS ∀ψ ∈ C1(Ω).

(2.24)

Definition 3 (Total energy formulation for Navier b.c.) The triple
(ϱ,u, ϑ) is called a weak solution to system (1.15), (1.3), (1.4), (1.6), (1.8),

(1.10) and (1.16), if ϱ ∈ L
6γ
5 (Ω),

∫
Ω
ϱ dx = M , u ∈ W 1,2

n (Ω;R3), ϑ ∈
W 1,r(Ω) ∩ L3m(Ω) ∩ Ll+1(∂Ω), r > 1 with ϱ|u|2 ∈ L

6
5 (Ω), ϱuϑ ∈ L1(Ω;R3),

S(D(u), ϑ)u ∈ L1(Ω;R3), ϑm∇ϑ ∈ L1(Ω;R3). Moreover, the continuity equa-
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tion is satisfied in the sense as in (2.19), and∫
Ω

(
− ϱ(u⊗ u) : ∇φφφ− p(ϱ, ϑ) divφφφ+ S(D(u), ϑ) : ∇φφφ

)
dx

+α

∫
∂Ω

u ·φφφ dS =

∫
Ω

ϱf ·φφφ dx ∀φφφ ∈ C1
n(Ω;R

3),
(2.25)

∫
Ω

−
(1
2
ϱ|u|2 + ϱe(ϱ, ϑ)

)
u · ∇ψ dx =

∫
Ω

(
ϱf · uψ + p(ϱ, ϑ)u · ∇ψ

)
dx

−
∫
Ω

((
S(D(u), ϑ)u

)
· ∇ψ + κ(ϑ)∇ϑ · ∇ψ

)
dx

−
∫
∂Ω

L(ϑ)(ϑ−Θ0)ψ dS − α

∫
∂Ω

|u|2ψ dS ∀ψ ∈ C1(Ω).

(2.26)

Another definition concerns the formulation with the entropy equation.
The main problem is that due to mathematical reasons it is difficult to expect
that it is possible to obtain equality in the entropy formulation. However,
it is enough to prove inequality and in order to keep the weak–strong com-
patibility (sufficiently smooth solution of this formulation is in fact classical
solution to the original formulation), it is necessary to extract at least a
part of the information from the total energy balance. Again, formulations
for both boundary conditions may include either (1.5) or (1.4) with (1.12)–
(1.14).

Definition 4 (Variational entropy solution for Dirichlet b.c.) The
triple (ϱ,u, ϑ) is called a variational entropy solution to system (1.15)1−2,
(1.18), (1.3), (1.4), (1.6), (1.8), (1.9) and (1.16), if ϱ ∈ Lγ(Ω),

∫
Ω
ϱ dx =

M , u ∈ W 1,2
0 (Ω;R3), ϑ ∈ W 1,r(Ω) ∩ L3m(Ω) ∩ Ll+1(∂Ω), r > 1, with

ϱu ∈ L
6
5 (Ω;R3), ϱϑ ∈ L1(Ω), and ϑ−1S(D(u), ϑ)u ∈ L1(Ω;R3), L(ϑ), L(ϑ)

ϑ
∈

L1(∂Ω), κ(ϑ) |∇ϑ|2
ϑ2 ∈ L1(Ω) and κ(ϑ)∇ϑ

ϑ
∈ L1(Ω;R3). Moreover, equalities

(2.22) and (2.23) are satisfied in the same sense as in Definition 2, and we
have the entropy inequality∫

Ω

(S(D(u), ϑ) : ∇u

ϑ
+ κ(ϑ)

|∇ϑ|2

ϑ2

)
ψ dx+

∫
∂Ω

L(ϑ)

ϑ
Θ0ψ dS

≤
∫
∂Ω

L(ϑ)ψ dS +

∫
Ω

(
κ(ϑ)

∇ϑ · ∇ψ
ϑ

− ϱs(ϱ, ϑ)u · ∇ψ
)
dx

(2.27)
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for all non-negative ψ ∈ C1(Ω), together with the global total energy balance∫
∂Ω

L(ϑ)(ϑ−Θ0) dS =

∫
Ω

ϱf · u dx. (2.28)

Similarly as above we have

Definition 5 (Variational entropy solution for Navier b.c.) The
triple (ϱ,u, ϑ) is called a variational entropy solution to system (1.15)1−2,
(1.18), (1.3), (1.4), (1.6), (1.8), (1.10) and (1.16), if ϱ ∈ Lγ(Ω),

∫
Ω
ϱ dx =

M , u ∈ W 1,2
n (Ω;R3), ϑ ∈ W 1,r(Ω) ∩ L3m(Ω) ∩ Ll+1(∂Ω), r > 1, with ϱu ∈

L
6
5 (Ω;R3), ϱϑ ∈ L1(Ω), ϑ−1S(D(u), ϑ)u ∈ L1(Ω;R3), L(ϑ), L(ϑ)

ϑ
∈ L1(∂Ω),

κ(ϑ) |∇ϑ|2
ϑ2 ∈ L1(Ω) and κ(ϑ)∇ϑ

ϑ
∈ L1(Ω;R3). Moreover, equalities (2.22) and

(2.25) are satisfied in the same sense as in Definition 3, we have the entropy
inequality (2.27) in the same sense as in Definition 4, together with the global
total energy balance

α

∫
∂Ω

|u|2 dS +

∫
∂Ω

L(ϑ)(ϑ−Θ0) dS =

∫
Ω

ϱf · u dx. (2.29)

We will also need the notion of the renormalized solution to the continuity
equation

Definition 6 (Renormalized solution to continuity equation.) Let

u ∈ W 1,2
loc (R

3;R3) and ϱ ∈ L
6
5
loc(R

3) solve

div(ϱu) = 0 in D′(R3).

Then the pair (ϱ,u) is called a renormalized solution to the continuity equa-
tion, if

div(b(ϱ)u) +
(
ϱb′(ϱ)− b(ϱ)

)
divu = 0 in D′(R3) (2.30)

for all b ∈ C1([0,∞)) ∩W 1,∞((0,∞)) with zb′(z) ∈ L∞((0,∞)).

2.2 Main results

2.2.1 Existence of a solution for internal energy formulation

We first describe the result from [Mucha Pokorný 2009] which was the
first paper dealing with weak solutions for the steady compressible Navier–
Stokes–Fourier system in our formulation. The technique was based on
the previous results of both authors, see papers [Mucha Pokorný 2006] and
[Pokorný Mucha 2008]. It holds
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Theorem 1 (Internal energy formulation.) [Mucha Pokorný 2009]
Let Ω ∈ C2 be a bounded domain in R3 which is not axially symmetric if
α = 0. Let the viscosities be constant. Let f ∈ L∞(Ω;R3) and

γ > 3, m = l + 1 >
3γ − 1

3γ − 7
.

Then there exists a weak solution to our problem (1.15)1−2, (1.17), (1.16),
(1.2), (1.5), (1.6), (1.8) and (1.9) in the sense of Definition 1 such that

ϱ ∈ L∞(Ω), u ∈ W 1,q(Ω;R3), ϑ ∈ W 1,q(Ω) for all 1 ≤ q <∞,

and ϱ ≥ 0, ϑ > 0 a.e. in Ω.

A similar result in two space dimensions can be found in the paper
[Pecharová Pokorný 2010], for γ > 2 and m = l + 1 > γ−1

γ−2
.

2.2.2 Weak and variational entropy solution

In this section we shall explain the main ideas connected with results from
papers [Novotný Pokorný 2011a], [Novotný Pokorný 2011b] and
[Jesslé et al. 2014]. The main disadvantage of the results from the previous
section ([Mucha Pokorný 2009]) is that the estimate of the velocity gradient
is deduced from the momentum equation which means that it depends on
the density. The main novelty of the aforementioned series of papers consid-
ered in this chapter is that the estimate of the velocity is deduced from the
entropy inequality. It is then independent of any other unknown quantities.

We present the following results

Theorem 2 (Dirichlet boundary conditions.) [Novotný Pokorný
2011a] Let Ω ∈ C2 be a bounded domain in R3, f ∈ L∞(Ω;R3), Θ0 ≥ K0 > 0
a.e. at ∂Ω, Θ0 ∈ L1(∂Ω). Let γ > 3

2
, m > max

{
2
3
, 2
3(γ−1)

}
, l = 0. Then there

exists a variational entropy solution to (1.15)1−2, (1.18), (1.3), (1.4), (1.6),
(1.8), (1.9) and (1.16) in the sense of Definition 4. Moreover, ϱ ≥ 0, ϑ > 0
a.e. in Ω and (ϱ,u) is a renormalized solution to the continuity equation in
the sense of Definition 6.

In addition, if m > 1 and γ > 5
3
, then the solution is a weak solution in

the sense of Definition 2.
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Theorem 3 (Dirichlet boundary conditions.) [Novotný Pokorný
2011b] Let Ω be a C2 be a bounded domain in R3, f ∈ L∞(Ω;R3), Θ0 ≥
K0 > 0 a.e. at ∂Ω, Θ0 ∈ L1(∂Ω). Let γ > 1, m > max

{
2
3
, 2
3(γ−1)

}
, l = 0.

Then there exists a variational entropy solution to (1.15)1−2, (1.18), (1.3),
(1.4), (1.6), (1.8), (1.9) and (1.16) in the sense of Definition 4. Moreover,
ϱ ≥ 0, ϑ > 0 a.e. in Ω and (ϱ,u) is a renormalized solution to the continuity
equation in the sense of Definition 6.

In addition, if m > max{1, 2γ
3(3γ−4)

} and γ > 4
3
, then the solution is a

weak solution in the sense of Definition 2.

Theorem 4 (Navier boundary conditions.) [Jesslé et al 2014] Let Ω
be a C2 bounded domain in R3, f ∈ L∞(Ω;R3), Θ0 ≥ K0 > 0 a.e. at ∂Ω,
Θ0 ∈ L1(∂Ω). Let γ > 1, m > max

{
2
3
, 2
3(γ−1)

}
, l = 0. Then there exists a

variational entropy solution to (1.15)1−2, (1.18), (1.3), (1.4), (1.6), (1.8),
(1.10) and (1.16) in the sense of Definition 5. Moreover, ϱ ≥ 0, ϑ > 0 a.e.
in Ω and (ϱ,u) is a renormalized solution to the continuity in the sense of
Definition 6.

In addition, if m > 1 and γ > 5
4
, then the solution is a weak solution in

the sense of Definition 3.

Remark 2.1 (i) Note that the results of Theorem 2 hold also for the Navier
boundary conditions, just the proof in [Novotný Pokorný 2011a] was per-
formed for the Dirichlet ones.
(ii) In fact, the paper [Novotný Pokorný 2011b] contains a weaker result than
Theorem 3. However, as explained in [Mucha et al 2018], to obtain Theorem
3, it is enough to modify slightly at one step the proof for the limit passages.
(iii) It is worth mentioning that the result of Theorem 4 is stronger than
the result of Theorem 3 in the sense that the weak solution exists for larger
interval of γ.

2.2.3 Two dimensional flow

We consider our system of equations (1.15) with the boundary conditions
(1.8)–(1.9) and the given total mass (1.16) in a bounded domain Ω ⊂ R2. We
assume the viscous part of the stress tensor in the form (1.3) (N = 2) and
the heat flux in the form (1.6). Moreover, we take L = const in (1.8). We
assume for γ > 1 the pressure law in the form (1.5) or, formally for γ = 1,
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we take

p = p(ϱ, ϑ) = ϱϑ+
ϱ2

ϱ+ 1
lnα(1 + ϱ) (2.31)

with α > 0. The corresponding specific internal energy fulfils the Maxwell
relation (1.12)

e = e(ϱ, ϑ) =
lnα+1(1 + ϱ)

α+ 1
+ cvϑ, cv = const > 0,

and the specific entropy is

s(ϱ, ϑ) = ln
ϑcv

ϱ
+ s0.

We consider weak solutions to the problem above defined similarly as in
Definition 2 with the corresponding modifications for the pressure law (2.31).
This problem was studied in [Novotný Pokorný 2011c] for both (1.5) and
(2.31). The improvement for the pressure law (2.31) can be found in the
later paper [Pokorný 2011]. The corresponding results read as follows

Theorem 5 (2D flow.) [Novotný Pokorný 2011] & [Pokorný 2011]
Let Ω ∈ C2 be a bounded domain in R2, f ∈ L∞(Ω;R2), Θ0 ≥ K0 > 0 a.e.
on ∂Ω, Θ0 ∈ L1(∂Ω), L > 0.
(i) Let γ > 1, m > 0. Then there exists a weak solution to our problem with
the pressure law (1.5).
(ii) Let α > 1 and α ≥ 1

m
, m > 0. Then there exists a weak solution to our

problem with the pressure law (2.31).
Moreover, (ϱ,u) extended by zero outside of Ω is a renormalized solution to
the continuity equation.

2.3 Comments to the results, main used techniques

We now present basic ideas of the proofs of the theorems presented above.
Generally, the methods are based on standard ideas from the theory of partial
differential equations. They consist of the following steps

• formulation of the approximate problem

• solvability of the approximate problem

• estimates of the solutions to the approximate problems
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• limit passage to the original problem

The form of the approximate problem is closely connected with so-called
a priori estimates. These are estimates of solutions to the original problem
(even though, at that moment we might not know whether the solution really
exists). The advantage of having such estimates is connected with the fact
that they provide us ideas what kind of estimates we may hope to get from
our approximate problems and they also provide us hint that the approximate
problems should be constructed in such a way that we shall be able to extract
uniform estimates of such type. Another important issue in the construction
of the approximate problem is that we should be able (relatively easily)
construct solutions to these problems.

The last step of our procedure which is at least for nonlinear problems
the hardest one is to verify that the limit of the sequence of solutions to
our approximate problem indeed solves the original problem. This is closely
connected, again in case of nonlinear problem, to the problem of compactness
of the solutions since the estimates ensure us typically only estimates which
are not sufficient to pass to the limit in the nonlinear terms. Typical sources
of the compactness are compact embedding of some functions spaces (in our
case of Sobolev spaces to the Lebesgue spaces which can be applied in our
situation to the sequence of velocities and temperatures) and compensated
compactness tools which allow to prove compactness even in the case when
the estimates do not provide any compact embeddings (in our case, this is
the situation for the sequence of densities). Let us discuss these issues in
more details.

Let us fix, e.g., the weak solutions for the total energy/entropy formula-
tion in the case of the Dirichlet boundary conditions. In this case we can
have the following a priori estimates (we will mention how to obtain these
estimates for the approximate problems later)

∥u∥1,2 + ∥∇ϑ
m
2 ∥2 + ∥∇ log ϑ∥2 + ∥ϑ∥L1(∂Ω) + ∥ϱ∥γ+Θ ≤ C, (2.32)

where Θ > 0 for γ > 3
2
and C depends only on the data of our problem.

2.3.1 Formulation of the approximate problem

In order to formulate our approximate problem, we need to keep in mind
that the problem should be solvable and at the same moment, at certain
stage, it should provide us with estimates (2.32). Typical tools used in this
case are the following
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• elliptic regularization

• finite dimensional approximation (or Galerkin approximation)

• reformulation to logarithms of sought quantities

• adding higher powers

We explain how this general idea is applied to solve our problem. We replace
the continuity equation (1.15)1 in Ω by

−ε∆ϱ+ div(ϱu) + εϱ = εh (2.33)

in Ω with the Neumann boundary condition on ∂Ω

∂ϱ

∂n
= 0.

First of all, for given sufficiently regular velocity the existence and unique-
ness of a solution is just a consequence of the Riesz representation theorem.
Further, if h is non-negative, then also ϱ is non-negative. This follows by
integration (2.33) over the set, where ϱ < 0; the fact that we may integrate
by parts follows by Sard’s theorem. Finally, the total mass is given by the
”total mass” of the function h which is just consequence of integrating (2.33)
over Ω.

Next, to approximate the momentum equation, we first add δϱβ for δ > 0
and β ≫ 1 to the pressure function and we apply the finite dimensional
projection, i.e. we look for Galerkin approximation of the velocity. Then,
after suitable linearization, the existence of a solution for given density to
this problem is trivial.

Finally, we also regularize the internal energy balance by adding terms
with higher power of the temperature (κδ(ϑ) = κ(ϑ) + δϑB) and by adding
suitable terms in logarithms of the temperature. Then existence of a solution
(after linearization) is just a consequence of the standard elliptic theory. The
reason of adding the logarithmic terms is the fact that having constructed the
logarithm of the temperature we immediately obtain that the temperature
must be strictly positive; a maximum principle yielding this information is
not evident here.
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2.3.2 Solvability of the approximate problem

Due to the fact that each of the (possibly linearized) approximate prob-
lems is solvable, to put the equations together the technique of fixed points
is usually applied. In this case, a version of the Schauder fixed point theorem
(sometimes called Schaeffer’s fixed point theorem, see e.g. [Evans 1998]) can
be applied. Since the compactness of the corresponding operator is trivial
by compact embedding theorems, we only need to verify a priori estimates
of the possible fixed points in suitable spaces.

They can be obtained by means of the approximate versions of the en-
tropy and total energy balances integrated over Ω. Due to the fact that the
temperature is strictly positive and all functions are sufficiently regular, we
can deduce both identities directly and we can obtain (except for the density)
basically estimates from (2.32). The density can be estimated directly from
the approximate continuity equation and higher integrability and differentia-
bility estimates follow by standard elliptic theory. Whence the solvability is
proved.

2.3.3 Limit passage to the original problem

We have now three parameters and we need to pass to the limit with
N → ∞ (Galerkin approximation for the momentum equation), ε → 0 (el-
liptic regularization of the continuity equation) and δ → 0 (higher powers in
the density and temperature), exactly in this order. The first limit passage
is not difficult; just to show the strong convergence of the velocity gradient
(recall that such a term appears in the internal energy balance) we have to
employ the technique of energy equality before and after the limit passage in
the momentum equation. Since we are not able to repeat this argument for
the following limit passages, we have to replace the internal energy balance
by the total energy balance and the entropy balance. Due to the sufficient
regularity of the density and temperature, this is still possible. The second
limit passage, when ε→ 0, already faces the main difficulty of the compress-
ible Navier–Stokes(–Fourier) system: the lack of direct estimates and later
also compactness of the sequence of the densities. To solve the first issue, the
estimates based on the application of the Bogovskii operator are used. More
precisely, we apply as test function the solution of the problem

divφφφ = ϱΘ − 1

|Ω|

∫
Ω

ϱΘ dx
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with homogeneous Dirichlet boundary condition. It can be shown that there
exist a special branch of solutions (indeed, the problem has infinitely many
solutions) such that the solution is unique and, moreover, its Lp-norm of the
gradient is controlled by the Lp-norm of the right-hand side. After integrating
by parts, the pressure term yields∫

Ω

(
ϱγ + ϱϑ+ δϱβ

)
ϱΘ dx− 1

|Ω|

∫
Ω

ϱΘ dx

∫
Ω

(
p(ϱ, θ) + δϱβ

)
dx

∼
∫
Ω

(
p(ϱ, θ) + δϱβ

)
divφφφ dx = RHS

which, after estimating the terms on the right-hand side (recall also that the
L1-norm of the density is uniformly controlled), provides the sought estimates
of the density.

Next problem is the compactness of the density as the previous estimate
leads only to the control of the density sequence in some Lp-spaces. To con-
clude the strong convergence of the density, compensated compactness tools,
based in particular on the renormalization of the continuity equation, must be
employed. While in this step only the effective viscous flux identity must be
combined with the renormalized continuity equation, in the next step, when
δ → 0, we also need to show that the limit velocity and density solve the
continuity equation in the renormalized sense. This can be verified due to an
estimate of a quantity called the oscillation defect measure which in fact par-
tially controls the lack of convergence of a non-linear quantity due to the weak
convergence. All details can be found in the paper [Novotný Pokorný 2011a].

Finally, if γ is close to 1, the estimate coming from the Bogovskii operator
is not any more able to help us, since Θ can be positive only for γ > 3

2
.

Therefore, a different technique, based on special choice of the test function
must be employed. Here, it leads to estimates of the type

sup
x0∈Ω

∫
Ω

p(ϱ, ϑ)

|x− x0|α
dx ≤ C

for some α > 0. More details can be found in particular in the overview
paper [Kreml et al 2018].

2.3.4 Existence result in two dimensions

The proof in the two-dimensional setting follows more or less the same
lines. The only difference, in the case when the pressure has almost lin-
ear behaviour with respect to the density (i.e., the form (2.31)), is in some
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estimates, the Lebesgue spaces must be replaced by suitable Orlicz spaces.
Otherwise the proof is the same and in a sense, even slightly simpler.

3 Related problems

This section contains results which are connected with more complex
problems than just existence of solutions to steady compressible Navier–
Stokes–Fourier system, however, which are closely connected with the results
from the previous section. It is the time-periodic problem from the com-
pressible Navier–Stokes–Fourier system, where the technique for the steady
problem is combined with the technique for the evolutionary one, and two
problems, which are more complex and the system from the last sections is
only part of the whole system (steady flow with radiation and steady flow
of chemically reacting mixtures). The results are described in the following
subsections.

3.1 Compressible fluid flow with radiation

We now present the result from paper [Kreml et al. 2013], where a steady
flow of a radiative gas has been considered. We are not going into details of
its modelling, more information can be found e.g. in aforementioned paper
and references therein. We consider the following system of equations in a
bounded Ω ⊂ R3

div(ϱu) = 0,

div(ϱu⊗ u)− div S+∇p = ϱf − sF ,

div(ϱEu) = ϱf · u− div(pu) + div(Su)− div q− sE,

λI +ωωω · ∇xI = S,
(3.34)

where the last equation describes the transport of radiative intensity denoted
by I. The right-hand side S is a given function of I, ωωω and u. The quantity
sF denotes the radiative flux and sE is the radiative energy. The viscous part
of the stress tensor is taken in the form (1.3) with the temperature dependent
viscosities as in (1.3) such that

µ(ϑ) ∼ (1 + ϑ)a, 0 ≤ ξ(ϑ) ≤ C(1 + ϑ)a

for 0 ≤ a ≤ 1. The pressure is considered in the form (1.5) and the heat
flux fulfils (1.6), L is a bounded function (l = 0). The system is considered
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together with the homogeneous Dirichlet boundary conditions for the velocity
(1.9) and the Newton boundary condition for the heat flux (1.10).

We also prescribe the total mass of the fluid (1.16). The main result reads
as follows

Theorem 6 (Steady radiative flow.) [Kreml et al 2013] Let Ω ∈ C2

be a bounded domain in R3, f ∈ L∞(Ω;R3), Θ0 ≥ K0 > 0 a.e. at ∂Ω,
Θ0 ∈ L1(∂Ω), M > 0. Moreover, let

a ∈ (0, 1],

γ > max
{3
2
, 1 +

1− a

6a
+

1

2

√
4(1− a)

3a
+

(1− a)2

9a2

}
,

m > max
{
1− a,

1 + a

3
,
γ(1− a)

2γ − 3
,

γ(1− a)2

3(γ − 1)2a− γ(1− a)
,

1− a

6(γ − 1)a− 1
,
1 + a+ γ(1− a)

3(γ − 1)

}
.

Then there exists a variational entropy solution to system (3.34). Moreover,
the pair (ϱ,u) is a renormalized solution to the continuity equation.

If additionally

γ > max
{5
3
,
2 + a

3a

}
,

m > max
{
1,

(3γ − 1)(1− a)

3γ − 5
,
(3γ − 1)(1− a) + 2

3(γ − 1)
,

(1− a)(γ(2− 3a) + a)

a(6γ2 − 9γ + 5)− 2γ

}
,

then this solution is a weak solution.

3.2 Time-periodic solution

We describe the problem studied in [Feireisl et al. 2012b]. We consider
(1.1)1−2 together with (1.11), with the Dirichlet boundary conditions (1.9)
for the velocity and the Newton boundary conditions (1.8) for the tempera-
ture with L(ϑ) = d = const. The initial conditions (1.7) are replaced by the
fact that all functions are time-periodic with the period Tper > 0. We con-
sider the Fourier law (1.6) and the pressure law (1.4) and its consequences
for γ = 5

3
, i.e. the monoatomic gas (some extensions were considered in
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[Axmann Pokorný 2015]). Note, however, that we must assume in the pres-
sure additionally a radiation term (the term can be justified from physics
and, in mathematical treatment, plays an important role), i.e.

p(ϱ, ϑ) = p0(ϱ, ϑ) +
a

3
ϑ4,

e(ϱ, ϑ) = e0(ϱ, ϑ) +
a

ϱ
ϑ4,

s(ϱ, ϑ) = s0(ϱ, ϑ) +
4a

3ϱ
ϑ3,

(3.35)

where p0, e0 and s0 fulfill (1.4), (1.12)–(1.14) with γ = 5
3
. We also prescribe

the total mass (1.16).
When dealing with time-periodic problems, it is convenient to consider

all quantities defined on a time “sphere”

S1 = [0, Tper]|{0,Tper}.

Definition 7 (Time-periodic solution.) We say that a triple {ϱ,u, ϑ} is
a time-periodic weak solution to the Navier–Stokes–Fourier system (1.1)–
(1.4), (3.35), (1.6), (1.8), (1.9), (1.11) and (1.16) if the following holds:

• the solution belongs to the class ϱ ≥ 0, ϑ > 0 a.e.,

ϱ ∈ L∞(S1;L5/3(Ω)), ϑ ∈ L∞(S1;L4(Ω)), u ∈ L2(S1;W 1,2
0 (Ω;R3)),

ϑ3/2, lnϑ ∈ L2(S1;W 1,2(Ω))

• equation of continuity (1.1)1 is satisfied in the sense of renormalized
solutions,∫

S1

∫
Ω

(
b(ϱ)∂tφ+ b(ϱ)u · ∇φ+ (b(ϱ)− b′(ϱ)ϱ) divuφ

)
dx dt = 0

for any b ∈ C∞[0,∞), b′ ∈ C∞
c [0,∞), and any test function φ ∈

C∞(S1 × Ω)

• momentum equation (1.1)2 holds in the sense of distributions:∫
S1

∫
Ω

(
ϱu · ∂tφφφ+ (ϱu⊗ u) : ∇φφφ+ p(ϱ, ϑ) divφφφ

)
dx dt

=

∫
S1

∫
Ω

(
S(D(u), ϑ) : ∇φφφ− ϱf ·φφφ

)
dx dt

(3.36)

for any φφφ ∈ C∞
c (S1 × Ω;R3)
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• entropy equation (1.11) with the boundary condition (1.8) are satisfied
in the sense of the integral identity∫

S1

∫
Ω

(
ϱs(ϱ, ϑ)∂tψ + ϱs(ϱ, ϑ)u · ∇ψ +

q(ϑ,∇ϑ)
ϑ

· ∇ψ
)
dx dt

=

∫
S1

∫
∂Ω

d

ϑ
(ϑ−Θ0)ψ dS dt− < σ;ψ >

(3.37)
for any ψ ∈ C∞(S1 × Ω), where σ ∈ M+(S1 × Ω) is a non-negative
measure satisfying

σ ≥ 1

ϑ

(
S(D(u), ϑ) : ∇u− q(ϑ,∇ϑ) · ∇ϑ

ϑ

)
(3.38)

• the total energy balance∫
S1

(
∂tψ

∫
Ω

(1
2
ϱ|u|2 + ϱe(ϱ, ϑ)

)
dx
)
dt

=

∫
S1

ψ
(∫

∂Ω

d(ϑ−Θ0) dS −
∫
Ω

ϱf · u dx
)
dt

(3.39)

holds for any ψ ∈ C∞(S1).

It is not difficult to see that the entropy production inequality (3.37)
reduces to (1.11) as soon as the solution is smooth enough. In the paper
[Feireisl et al. 2012b], the following result was proved:

Theorem 7 (Time-periodic solution.) [Feireisl et al 2012c] Let Ω ⊂
R3 be a bounded domain with a boundary of class C2+ν. Suppose that the
thermodynamic functions p, e, and s satisfy hypotheses (3.35), (1.4) and
(1.12)–(1.14). Let f ∈ L∞(S1 × Ω;R3).

Then for any M > 0 the Navier–Stokes–Fourier system possesses at least
one time-periodic-solution {ϱ,u, ϑ} in the sense specified above such that∫

Ω

ϱ(t, ·) dx =M for all t ∈ S1.
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3.3 Mathematical theory for steady multicomponent
flow

We consider the system of equations

div(ϱu) = 0,

div(ϱu⊗ u)− div S+∇p = ϱf ,

div(ϱEu) + div(pu) + divQ− div(Su) = ϱf · u,
div(ϱYku) + divFk = ωk, k ∈ {1, . . . , L}

(3.40)

with the boundary conditions

u|∂Ω = 0,Fk · n|∂Ω = 0,−Q · n+ L(ϑ− ϑ0) = 0. (3.41)

The total mass of the mixture is prescribed,∫
Ω

ϱ dx =M > 0. (3.42)

The meaning of most quantities (the density of the mixture ϱ, its tem-
perature ϑ and velocity u) is the same as in the case of single constituted
fluid. Note just that u is the barycentric velocity and we assume that it is
enough to model the flow of the whole mixture just by this velocity. More-
over, we also do not distinguish between the temperature of each constituent.
On the other hand, we distinguish the amount of each constituent at each
place by looking for the mass fractions Yk := ϱk

ϱ
, where

∑L
k=1 ϱk = ϱ, hence∑L

k=1 Yk = 1. We assume this even though we cannot exclude that the den-
sity ϱ = 0 at some places. The stress tensor S has the same from as in the
previous sections, i.e. it is given by (1.3). As we have to assume that the
molar masses are the same (due to mathematical reasons), the pressure p is
given by (1.6). The specific total energy E = 1

2
|u|2 + e, where the specific

internal energy e = ϱγ−1

γ−1
+ ϑ

∑L
k=1 cvkYk with cvk, the constant-volume spe-

cific heat coefficients. Then cpk = cvk + 1, where cpk is the constant-pressure

specific heat coefficients. Next, the heat flux Q = q +
∑L

k=1 cpkϑFk with q
the part given by the Fourier law (1.6).

The multicomponent fluxes Fk have to fulfill
∑L

k=1Fk = 0 and they are
given by

Fk = −Yk
L∑
l=1

Dkl∇Yl,
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where D = {Dkl}Lk,l=1 is the multicomponent diffusion matrix. Except for
the structural assumption we take

|Dij(ϑ, Y⃗ )| ≤ C(|Y⃗ |)(1 + ϑb)

for some b > 0 and. Finally, the species production rates ωk fulfill
∑L

k=1 ωk =
0 as well as

−
L∑

k=1

gkωk ≥ 0,

where gk are the Gibbs functions. More details can be found in the paper
[Piasecki Pokorný 2017] and [Piasecki Pokorný 2018] and in particular also
in the monograph [Giovangigli 1999].

First, we define the objects we want to construct.

Definition 8 (Multicomponent flow; weak solution.) We say the set

of functions (ϱ,u, ϑ, Y⃗ ) is a weak solution to problem (3.40)–(3.42) with as-
sumptions stated above, provided

• ϱ ≥ 0 a.e. in Ω, ϱ ∈ L6γ/5(Ω),
∫
Ω
ϱ dx =M

• u ∈ W 1,2
0 (Ω), ϱ|u| and ϱ|u|2 ∈ L

6
5 (Ω)

• ϑ ∈ W 1,2(Ω) ∩ L3m(Ω), ϱϑ, ϱϑ|u|,Su, κ|∇ϑ| ∈ L1(Ω)

• Y⃗ ∈ W 1,2(Ω), Yk ≥ 0 a.e. in Ω,
∑L

k=1 Yk = 1 a.e. in Ω, Fk · n|∂Ω = 0

and the following integral equalities hold
• the weak formulation of the continuity equation∫

Ω

ϱu · ∇ψ dx = 0 (3.43)

holds for any test function ψ ∈ C∞(Ω)
• the weak formulation of the momentum equation

−
∫
Ω

(
ϱ (u⊗ u) : ∇φφφ− S : ∇φφφ

)
dx−

∫
Ω

π divφφφ dx =

∫
Ω

ϱf ·φφφ dx (3.44)

holds for any test function φφφ ∈ C∞
0 (Ω)

• the weak formulation of the species equations

−
∫
Ω

Ykϱu · ∇ψ dx−
∫
Ω

Fk · ∇ψ dx =

∫
Ω

ωkψ dx (3.45)
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holds for any test function ψ ∈ C∞(Ω) and for all k = 1, . . . , L
• the weak formulation of the total energy balance

−
∫
Ω

(
1

2
ϱ|u|2 + ϱe

)
u · ∇ψ dx+

∫
Ω

κ∇ϑ · ∇ψ dx

−
∫
Ω

(
L∑

k=1

hkFk

)
· ∇ψ dx =

∫
Ω

ϱf · uψ dx−
∫
Ω

(Su) · ∇ψ dx

+

∫
Ω

πu · ∇ψ dx−
∫
∂Ω

L(ϑ− ϑ0)ψ dS

(3.46)

holds for any test function ψ ∈ C∞(Ω).

The admissible range of γ in the pressure law for which we are able to show
existence of weak solutions in the above sense is limited mostly by the terms
ϱ|u|2u and Su in the weak formulation of total energy balance. Therefore,
similarly as in the single component flow, we replace the total energy balance
(3.40)3 by the entropy inequality specified in Definition 8 below. Note also
that for the Navier boundary conditions for the velocity it is possible to obtain
the existence of both weak and variational entropy solutions (see below)
under less restrictive assumptions on γ, cf. [Piasecki Pokorný 2018].

Definition 9 (Multicomponent flow; variational entropy solution.)

We say the set of functions (ϱ,u, ϑ, Y⃗ ) is a variational entropy solution to
problem (3.40–3.42) with assumptions stated above, provided

• ϱ ≥ 0 a.e. in Ω, ϱ ∈ Lsγ(Ω) for some s > 1,
∫
Ω
ϱ dx =M

• u ∈ W 1,2
0 (Ω), ϱu ∈ L

6
5 (Ω)

• ϑ ∈ W 1,r(Ω) ∩ L3m(Ω), r > 1, ϱϑ,S : ∇u
ϑ
, κ |∇ϑ|2

ϑ2 , κ∇ϑ
ϑ

∈ L1(Ω),
1
ϑ
∈ L1(∂Ω)

• Y⃗ ∈ W 1,2(Ω), Yk ≥ 0 a.e. in Ω,
∑L

k=1 Yk = 1 a.e. in Ω,
Fk · n|∂Ω = 0
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satisfy equations (3.43)–(3.45), the following entropy inequality

∫
Ω

S : ∇u

ϑ
ψ dx+

∫
κ
|∇ϑ|2

ϑ2
ψ dx−

∫
Ω

L∑
k=1

ωk(cpk − cvk log ϑ+ log Yk)ψ dx

+

∫
Ω

ψ
n∑

k,l=1

Dkl∇Yk · ∇Yl dx+
∫
∂Ω

L

ϑ
ϑ0ψ dS ≤

∫
κ∇ϑ · ∇ψ

ϑ
dx

−
∫
Ω

ϱsu · ∇ψ dx−
∫
Ω

log ϑ
( L∑

k=1

Fkcvk

)
· ∇ψ dx

+

∫
Ω

( L∑
k=1

Fk log Yk

)
· ∇ψ dx+

∫
∂Ω

Lψ dS (3.47)

for all non-negative ψ ∈ C∞(Ω) and the global total energy balance (i.e.
(3.46) with ψ ≡ 1) ∫

∂Ω

L(ϑ− ϑ0) dS =

∫
Ω

ϱf · u dx. (3.48)

Note, however, that (3.47) does not contain all terms from the formally
deduced entropy identity, some of them are missing. These terms are formally
equal to zero due to assumptions that ωk and Fk sum up to zero. We removed
them from the formulation of the entropy inequality due to the fact that we
cannot exclude the situation that ϱ = 0 in some large portions of Ω (with
positive Lebesgue measure), thus log ϱ is not well defined there. However,
the variational entropy solution has still the property that any sufficiently
smooth variational entropy solution in the sense above is a classical solution
to our problem, provided the density is strictly positive in Ω.

We are now in position to formulate our main result.

Theorem 8 (Multicomponent flow.) [Piasecki Pokorný 2017] Let
γ > 1, M > 0, m > max{2

3
, 2
3(γ−1)

}, b < 3m
2
. Let Ω ∈ C2. Then there

exists at least one variational entropy solution to our problem above. More-
over, (ϱ,u) is the renormalized solution to the continuity equation.

In addition, if m > max{1, 2γ
3(3γ−4)

}, γ > 4
3
, b < 3m−2

2
, then the solution

is a weak solution in the sense above.
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Resumé

The presented thesis contains mostly the existence results for equations
describing steady flow of heat conducting compressible viscous Newtonian
fluid, i.e. for the steady compressible Navier–Stokes–Fourier system under
different boundary conditions. It deals with existence of solutions for large
data, i.e., we do not try to construct solutions which are close to some known
regular solutions. This fact leads to the necessity of considering the weak
solutions and their generalizations instead of the classical or strong ones.

The formulation of the problem as a system of balance laws allows several
formulations which are equivalent on the level of classical or strong solutions:
the balance of mass (the continuity equation) and the balance of the linear
momentum can be combined with the internal energy balance, total energy
balance or the entropy balance. These three possible formulations are not
any more equivalent on the level of weak solutions. It is, however, impor-
tant to recall that all three types of solutions possess the property of the
weak-strong compatibility. In the thesis, it is demonstrated that in differ-
ent situations (properties of viscosities, different values of physical constants
and different boundary conditions for the velocity) existence of solutions for
different formulations can be obtained.

Based on similar situation in the evolutionary problems, it is demon-
strated that the entropy inequality is an extremely effective tool in this type
of problems. It provides useful estimates which are stronger than estimates
coming from the energy inequality, and, in addition, the solution based on
the entropy inequality (together with a partial information from the total
energy balance) exists for the largest set of parameters (the value of the adi-
abatic constant and the speed growth of the heat conductivity with respect
to the temperature).

This observation, together with tools used in the mathematical fluid me-
chanics and thermodynamics for evolutionary problems (density estimates
based on the Bogovskii operator, effective viscous flux identity, renormalized
solution to the continuity equation and oscillation defect measure estimates)
and tools specific for steady problems (potential estimates of the density up
to the boundary, possibility to use total energy balance in the weak formu-
lation) enabled to understand relatively well the problems of existence of
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solutions for steady systems describing flow of heat conducting compressible
Newtonian fluid.

This technique also helped to study closely related problems like exis-
tence of time periodic solutions for heat conducting compressible fluids with
physically realistic parameters (including at least the monatomic gas model)
or obtain results for more complex systems as chemically reacting gaseous
mixtures or flow of gases with radiation. The thesis also includes a very
specific result dealing with formulation of the problem with the internal en-
ergy balance which was actually the first real large data existence result for
steady equations of compressible heat conducting fluids. All the presented
results inspired other scientists who used the therein developed tools to study
similar problems.

The thesis is divided into two parts. In the first, introductory one, after
a short description of the studied problems, the known existence results are
formulated in dependence on the parameters of the problem. Furthermore,
the main ideas of the existence proofs as well as the necessary tools used
therein are briefly explained. Due to the complexity of the problem, all the
proofs are long and technically complicated. The second part then contains
eight selected most important papers from the perspective of the author of
the thesis. They were mostly published in high-ranked journals from the
field of partial differential equations or mathematical fluid mechanics and
were obtained in collaboration with different leading experts in the field of
mathematical fluid mechanics and thermodynamics.

Indeed, especially in the mathematical theory for models of complex flu-
ids, many important questions and problems remained unsolved or even un-
touched. Dealing with them can bring development of new tools and tech-
niques which may lead to improvement of results for the “simpler” problems,
but for sure, will also open new perspective and enable to study problems
which, nowadays, we even do not dare to dream about.
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namical systems in fluid mechanics. AIMS, Springfield, 2010.

[Gallavotti 2002] Gallavotti, G.: Foundations of fluid dynamics. Texts and
Monographs in Physics. Springer–Verlag, Berlin, 2002

[Giovangigli 1999] Giovangigli, V.: Multicomponent Flow Modeling. Model.
Simul. Sci. Eng. Technol., Birkhäuser, Boston, 1999.
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