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Abstract

Discrete event systems (DESs) are dynamical systems evolving by
occurrences of events that appear independently in time. The evolution
of a DES cannot be captured by classical modeling formalisms, such
as differential equations, but it can be captured by tools like automata
or Petri nets. Supervisory control is a formal approach for control
of DESs solving problems such as safety, nonblockingness, and fault
diagnosis encountered in systems with a high degree of automation.
Supervisory control of monolithic systems is a well-understood prob-
lem. However, large-scale systems are modular, consisting of many
small concurrent parts, where the state-space explosion problem is
the main issue when making the system monolithic. The modular
setting results in global specifications for which we suggest a new
approach to synthesize local controllers. We further investigate the
verification of nonblockingness for modular systems, the computation
of a coordinator for nonblockingness, the effect of projections on the
size of automata, the computation of a safe subset of specifications,
and the complexity of verifying some properties of modular DESs. In
decentralized supervisory control, several local supervisors cooperate
to accomplish a common goal. We suggest a new approach to construct
a controllable and coobservable subspecification by extending observ-
able events of local supervisors via communication and applying a
fully decentralized computation of local supervisors. We also discuss
the possibility to extend the framework to non-regular systems.
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Introduction

As the complexity of man-made systems grows, the risk of a human
operator error increases and a correct behavior of complex systems can
only be ensured by a supervisory control system. Supervisory control
is a formal approach to control a system solving problems such as
safety (avoidance of forbidden states), nonblockingness (avoidance of
deadlocks and live-locks), fault diagnosis (identification of erroneous
behavior), opacity (hiding a secret information in the system), et cetera.

Discrete event systems (DESs) introduced by Ramadge and Won-
ham [6] are dynamical systems evolving so that, in each state of the
system, a number of different transitions may occur. A supervisor pro-
vides a possibility for control actions that at any instance of time may
prohibit certain transitions from occurring. The supervisory control
problem is to design a supervisor that satisfies given specifications.
Specifications considered in the literature often require that the su-
pervisor prohibits certain undesirable sequences of events while, at
the same time, allows desirable sequences to occur. The supervisory
control problem changes with respect to different assumptions made
on the information available to the supervisor: the supervisor may
have full knowledge of the state of the system (perfect information)
or it may have access only to some partial information (imperfect
information).

In our work, a DES G is a deterministic finite automaton

G = (Q,Σ,δ ,q0,Qm)
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where Q is a finite set of states, q0 ∈ Q is the initial state of the
system, Qm ⊆ Q is the set of marked states, Σ is a finite set of events
used to label transitions between states, and δ is a partial transition
function from Q×Σ into Q describing the dynamics of the system.
The interpretation of δ is that if δ (q,a) is defined for state q ∈ Q and
event a ∈ Σ, then a transition labeled with a may take place in state q
and the next state of the system is state δ (q,a). We define L(G), the
language generated by G, as the set of all strings s such that δ (q0,s) is
defined, and Lm(G), the language marked by G, as the set of all strings
s such that δ (q0,s) is a marked state.

To provide a possibility for control, the event set Σ is partitioned
into two disjoint subsets Σu and Σc, where Σc is interpreted as the set
of events that can be controlled (disabled). We define a supervisor for
G as a function γ : Σ∗→ 2Σ such that Σu ⊆ γ(s), for all s ∈ Σ∗; the set
γ(s) is the set of events that are allowed by the supervisor to occur
after observing the string s.

A DES G together with a supervisor γ are called a supervised
system. Given a supervised system (G,γ), the language L(G,γ) is the
set of all strings in Σ∗ generated by the system G under the supervision
of γ , that is, ε ∈ L(G,γ), and if s ∈ L(G,γ) and sa ∈ L(G) such that
a ∈ γ(s), then sa ∈ L(G,γ).

A supervisor need not have access to the entire history of events;
it is with partial information as opposed to perfect information. To
model partial information, let P : Σ→ Σo∪{ε} be a function where
we interpret P(a) as the information provided to the supervisor on the
value of a. The possibility that P(a) is the empty string means that the
supervisor does not learn that a transition has occurred. We extend P to
a mapping from Σ∗ into Σ∗o by letting P(a1 · · ·an) be the concatenation
P(a1) · · ·P(an). A supervisor γ is under partial observation if there
is a function γP : Σ∗ → 2Σ such that γ(s) = γP(P(s)) for all s ∈ Σ∗.
The most common model of partial information is a natural projection
where for Σo ⊆ Σ, P(a) = a for a ∈ Σo and P(a) = ε otherwise.

A class of supervisors of interest is the set of finite-state feedback
supervisors. A supervisor γ belongs to this class if there exists a DES
S = (Q′,Σ,q′0,δ

′,Q′m) and a function γS : Q′ → 2Σ such that γ(s) =



γS(δ
′(q′0,s)). Any such S, together with the mapping γS, is called a

finite state realization of γ . We often identify the finite-state feedback
supervisor γS with its DES S and use the notation L(S/G) to denote
the language L(G,γS). The marked language of the supervised system
depends on a specification K and is defined as Lm(S/G) = L(S/G)∩K,
that is, the supervisor may mark according to the marking in the
specification. If the supervised system is nonblocking, that is,

Lm(S/G) = L(S/G)

where L denotes the prefix-closure of a language L, then the supervisor
S is called nonblocking.

In the monolithic case, the supervisory control problem is the
question, give a specification K and a plant G, to synthesize a maximal
(optimal) nonblocking finite-state feedback supervisor S such that

Lm(S/G)⊆ K .

This problem can be solved in polynomial time with respect to the size
of the DES representations of K and G [37, 53].

The Problem
Although the approaches for the monolithic supervisory control prob-
lem are well mastered, the main problem arises from the limited
computational resources. A plant is often modeled as a composition
of a large number of small systems (it is modular or concurrent). Even
if each component consists only of a few states, the state complexity
of their composition grows exponentially with respect to the number
of components (known as the state-space explosion problem).

Let the plant be given as a set {G1,G2, . . . ,Gn} of systems. Then
the monolithic system is

G = G1 ‖ G2 ‖ · · · ‖ Gn

and the state space of the monolithic plant G grows exponentially in the
number of components. Therefore, the complexity of the monolithic
supervisory control design grows very fast in the size of the model [38].



Let K be a specification. There are two possibilities:

1. K can be decomposed to K = K1 ‖ · · · ‖ Kn in such a way that
Ki is a specification for Gi (often, this is assumed in the litera-
ture [54, 15]), or

2. K cannot be decomposed to K = K1 ‖ · · · ‖ Kn in such a way
that Ki is a specification for Gi.

Let Gi be an automaton over Σi, i = 1, . . . ,n. Then the question
leads to the problem whether there are languages Ki over Σi such that
K = K1 ‖ · · · ‖ Kn, which is known as separability in the literature [54]
and is equivalent to the question whether

K = ‖n
i=1 Pi(K) ,

where Pi is a projection from ∪n
i=1Σi to Σi. This problem is PSPACE-

complete [16].
If the specification is separable, then we can take Ki = Pi(K) and

use the monolithic supervisory control synthesis for Gi and Ki to
synthesize an optimal supervisor Si such that

Lm(Si/Gi)⊆ Ki ,

which ensures by construction that the parallel composition of super-
vised systems satisfies the specification, that is,

Lm(S1/G1) ‖ Lm(S2/G2) ‖ · · · ‖ Lm(Sn/Gn)⊆ K .

However, the question we often face is that K is not separable. It
could be natural to take a maximal separable sublanguage of K (with
respect to inclusion), but to find out whether there is such a nonempty
sublanguage is an undecidable problem [28].

Our Approach
Our suggestion to overcome this issue is to use conditional decom-
posability [18], which abstracts the necessary information among the
components to ensure separability.



A language K is conditionally decomposable with respect to alpha-
bets (Σi)

n
i=1 and an alphabet Σ′ if Σ′ contains all shared events and K

is separable with respect to alphabets (Σi∪Σ′)n
i=1.

We have shown two advantages of conditional decomposability:

1. Every language can be made conditionally decomposable by
finding a convenient alphabet Σ′. This helps overcome the unde-
cidable issue of finding a maximal nonempty separable sublan-
guage.

2. The complexity of checking conditional decomposability is
lower than that of separability—conditional decomposability
can be verified in polynomial time, compared to PSPACE-com-
pleteness of deciding separability.

Theorem 1. Deciding whether a language K is conditionally decom-
posable can be solved in polynomial time with respect to the size of
the DES representation of K and the number of components. The
algorithmic complexity is cubic.

The way how to abstract the most appropriate information is still
under investigation. We have shown that to compute a minimal such
information with respect to set cardinality is NP-hard [19] and that
such a minimal information is not always the best choice [23]. There-
fore, we designed a polynomial algorithm to find some information
making the language conditionally decomposable [18].

We proceed as follows. Consider (for simplicity only two) au-
tomata G1 and G2 over Σ1 and Σ2, respectively, and let K be a specifi-
cation. We construct an alphabet Σ′ and a coordinator for safety G′ as
follows:

1. We set Σ′ = Σ1∩Σ2 to be the set of all pairwise shared events;

2. We use our polynomial algorithm to extend Σ′ so that K and K
are conditional decomposable;

3. We compute the coordinator for safety G′ = PΣ′(G1) ‖ PΣ′(G2),
where PΣ′ is a projection to Σ′.



This choice of the coordinator G′ does not modify the behavior of the
system in the sense that G1‖G2‖G′ = G1‖G2.

Since the projection of an automaton may result in an automaton
of exponential size (see the next section for more details), we may
need to further extend the alphabet Σ′ so that the projection PΣ′ is an
L(Gi)-observer, for i = 1,2, which can be done in polynomial (cubic)
time [36, 4]. This property ensures that the projected automaton is
not bigger than the original automaton (it is often much smaller) and
that the projection can be computed in polynomial time [55]. The
coordinator for safety is then often much smaller than the monolithic
plant.

Remark 2. For systems with many components, the abstracted infor-
mation often implies too much communication among the supervisors
although it is not needed. Therefore, rather than a single abstracted set
of information, we suggested (and constructed an algorithm) to search
for several local extensions that still ensure conditional decomposabil-
ity [16]. The polynomial-time complexity is preserved. In the rest of
this thesis, we simplify the discussion only to a single abstracted set
of information.



Partial Observation and Projections

As seen above, projections play an important role in our approach. It
is well known that the projection of an automaton may result in an au-
tomaton of exponential size. In our approach, we eliminated this state
explosion by the requirement that the projection is an observer, which
is a known property that bounds the size of the projected automaton to
at most the size of the input automaton [55]. However, the question
what is the worst-case complexity of projected automata is of its own
interest.

For a regular language L, we denote by ‖L‖ the smallest number
of states in any DES accepting the language L.

Theorem 3 ([55, 35, 14]). Let n≥ 2 and L be a regular language over
Σ with ‖L‖ = n. Let Σo ⊆ Σ and P be the projection of Σ∗ onto Σ∗o.
The tight upper bound on the size of the minimal DES for the projected
language P(L) is 3 ·2n−2−1.

We further improved the upper bound by considering the structure
of the automata; namely, we consider the number of states incident
with unobservable transitions.

Theorem 4. Let m,n ≥ 2, Σo ⊆ Σ, and P be the projection from Σ∗

onto Σ∗o. Let L be a regular language over the alphabet Σ with ‖L‖= n,
and (Q,Σ,δ ,s,F) be the minimal DES recognizing the language L, in
which |{p,q ∈ Q | p 6= q and q ∈ δ (p,Σ\Σo)}|= m. Then ‖P(L)‖ ≤
2n−1 +2n−m−1 and the bound is tight.

Notice that Theorem 3 is a direct consequence of our Theorem 4
since ‖P(L)‖ is maximal if m = 2.
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The situation is significantly different for projections of regular
languages with one-letter co-domains.

Theorem 5. Let a be a symbol in an alphabet Σ and P be the projection
of strings in Σ∗ to strings in a∗. Let L be a regular language over Σ

with ‖L‖= n. Then ‖P(L)‖ ≤ e(1+o(1))
√

n lnn.

The following theorem discusses a special case that gives an idea
how to treat the cases with more and more unobservable transitions.

Theorem 6. Let m,n≥ 2 and Σo⊆Σ. Let P be the projection of strings
in Σ∗ to strings in Σ∗o. Let L be a regular language over the alphabet Σ

with ‖L‖= n, and (Q,Σ,δ ,s,F) be the minimal DES recognizing the
language L, in which |{p,q ∈Q | p 6= q and q ∈ δ (p,Σ\Σo)}|= m. If
at least m transitions in the DES are unobservable for the projection,
then ‖P(L)‖ ≤ 2n−2 +2n−3 +2n−m−1 and the bound is tight.

We also considered the case of finite languages.

Proposition 7. Let a be a symbol in an alphabet Σ and let P be the
projection of Σ∗ onto a∗. If L is a finite regular language over Σ, then
‖P(L)‖ ≤ ‖L‖. The bound is tight for any alphabet.

Theorem 8. Let k,n≥ 2. There exist alphabets Σ and Σo with Σo ⊆ Σ

and |Σo|= k, and a finite language L over Σ with ‖L‖= n such that

‖P(L)‖= kbn/(logk+1)c+1−1
k−1

−1

where P is the projection of strings in Σ∗ onto strings in Σ∗o. In addition,
for any finite language L′ over Σ,

‖P(L′)‖ ≤ kd(n/(logk+1)e+1−1
k−1

−1.

To consider a more practical point of view, there is a study that,
based on some empirical studies, conjectures that the average com-
plexity of projections of DESs is quasi-polynomial [8].



Application in Modular Supervisory Control

We now formulate the modular supervisory control problem of our
interest. For simplicity, we formulate it only for the case of two
systems, but it should be clear how to generalize it to any number of
components.

Problem 9. Let G1 and G2 be generators over the alphabets Σ1 and
Σ2, respectively. Assume that a specification K ⊆ Lm(G1‖G2) and
its prefix-closure K are conditionally decomposable with respect to
Σ1, Σ2, and Σ′, for an alphabet Σ′ such that Σ1 ∩ Σ2 ⊆ Σ′ ⊆ Σ1 ∪
Σ2. Let G′ = PΣ′(G1) ‖ PΣ′(G2) be a coordinator that ensures the
necessary communication between the systems G1 and G2. The aim is
to determine nonblocking supervisors S1 and S2 such that

Lm(S1/[G1‖G′]) ‖ Lm(S2/[G2‖G′]) = K

and

L(S1/[G1‖G′]) ‖ L(S2/[G2‖G′]) = K ,

i.e., the supervisors fulfill the specification and are nonconflicting.

The question is whether it is possible to distribute the monolithic
supervisor with help of a coordinator in such a way that there are
nonblocking and nonconflicting supervisors S1 and S2 such that the
supervised system satisfies safety and nonblockingness.

We have shown that such supervisors S1 and S2 exist if and only if
Lm(S1/(G1‖G′)) ‖ PΣ′(S2) = P1+Σ′(K), Lm(S2/(G2‖G′)) ‖ PΣ′(S1) =
P2+Σ′(K), and S1 and S2 are nonblocking and nonconflicting supervi-
sors for G1‖G′ and G2‖G′, respectively. This gives the equations with
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variable languages X1 and X2:

P1+Σ′(K)⊆ X1 ⊆ G1‖G′, X1‖PΣ′(X2) = P1+Σ′(K)

P2+Σ′(K)⊆ X2 ⊆ G2‖G′, X2‖PΣ′(X1) = P2+Σ′(K) .
(3.1)

Let infC(K,L) denote the infimal prefix-closed controllable super-
language of K with respect to L [6]. Then we immediately have the
following.

Proposition 10. If the specification K is prefix-closed, then there is a
solution of Problem 9 if and only if the languages

1. T1 = infC(P1+Σ′(K),G1‖G′) and

2. T2 = infC(P2+Σ′(K),G2‖G′)

satisfy equations (3.1).

The result does not hold for general non-prefix-closed languages,
because there is no infimal non-prefix-closed controllable superlan-
guage [6]. However, we have shown the following.

Theorem 11. There is a solution for specification K if and only if
there is a solution for its prefix-closure K.

Hence, it is sufficient to check whether there is a solution for the
prefix-closure K of the specification K. Theorem 11 then gives a
solution for K, which can actually be constructed from the solution for
K.

Infimal Observable Superlanguages
To generalize our approach to partial observation, we need to general-
ize the computation of infimal controllable superlanguages to infimal
controllable and observable superlanguages.

Lafortune and Chen [26] have shown that the infimal prefix-closed
and controllable superlanguage can be computed from a deterministic
automaton in linear time. Kumar and Shayman [25] further showed
that when considering the computation of the infimal prefix-closed



and observable superlanguage of a language K over Σ with respect to
L(G), it is sufficient to consider the computation with respect to the
language Σ∗. The existence of a polynomial (time or space) algorithm
for this computation was an open problem.

For a language K of state complexity n, we showed that the upper-
bound on the state complexity of the infimal prefix-closed and observ-
able superlanguage of K with respect to the language Σ∗ is 2n +1. We
further prove that this bound is asymptotically tight by showing that the
worst-case lower-bound state complexity is at least 3

4 ·2
n−1 = Ω(2n).

Since the state complexity is exponential, so is the time complexity of
any algorithm computing the corresponding minimal DES.

Theorem 12. Let K over Σ be a language with state complexity n,
and let P be a projection. Then the worst-case state complexity of the
infimal prefix-closed and observable superlanguage of K is Θ(2n).

Our construction shows that a DES representation of the infimal
prefix-closed and observable superlanguage of K can be computed in
time O(2n). This improves the complexity that can be derived from
the previously known formulae of Rudie and Wonham [42] and Kumar
and Shayman [25].

If Problem 9 has no Solution
If there is no solution of Problem 9, we focus on a slightly modified
problem with help of a coordinator in order to obtain an acceptable
sublanguage of the specification for which a solution exists.

Problem 13. Consider generators G1 and G2 over alphabets Σ1 and
Σ2, respectively. Let Σ′ be an alphabet such that Σ1∩Σ2⊆ Σ′⊆ Σ1∪Σ2.
Let G′ over Σ′ be a coordinator for safety. Assume that a specifica-
tion K ⊆ Lm(G1‖G2‖G′) and its prefix-closure K are conditionally
decomposable with respect to Σ1, Σ2, and Σ′. The aim is to determine
nonblocking supervisors S1 and S2 such that

Lm(Si/[Gi‖G′])⊆ Pi+Σ′(K) ,



i = 1,2, and the supervised system satisfies

Lm(S1/[G1‖G′]) ‖ Lm(S2/[G2‖G′]) = K .

In this way, we basically reduced the modular supervisory control
problem to several monolithic problems for small(er) systems. We then
showed that there exist such supervisors if and only if the specification
K is conditionally controllable [19, 23].

Theorem 14. There exist nonblocking supervisors S1 and S2 such that
the supervised system satisfies Lm(S1/[G1‖G′]) ‖ Lm(S2/[G2‖G′]) =K
if and only if the specification K is conditionally controllable.

Similarly as in monolithic supervisory control, if the specifica-
tion fails to be conditionally controllable, the supremal conditionally
controllable sublanguage is computed.

Theorem 15. The supremal conditionally controllable sublanguage
of a language K always exists and is equal to the union of all condi-
tionally controllable sublanguages of K.

We define languages

supC1+Σ′ = supC(P1+Σ′(K),L(G1‖G′))
supC2+Σ′ = supC(P2+Σ′(K),L(G2‖G′))

(3.2)

where supC(K,L) denotes the supremal controllable sublanguage of
K with respect to L.

Theorem 16. Assume that the languages supC1+Σ′ and supC2+Σ′

are synchronously nonconflicting (e.g., prefix-closed). Then we have
that supC1+Σ′ ‖ supC2+Σ′ is controllable. If, in addition, the intersec-
tion PΣ′(supC1+Σ′)∩PΣ′(supC2+Σ′) is controllable, then supC1+Σ′ ‖
supC2+Σ′ is conditionally controllable.

The previous theorem suggest the following comparison between
the solutions of Problems 9 and 13.



Theorem 17. The optimal solution of Problem 13 (the supremal con-
ditionally controllable sublanguage) is included in the solution of
Problem 9 (the distributed solution supC1+Σ′ ‖ supC2+Σ′ ).

We now discuss conditions that ensure optimality. To this end,
we make use of the existing notions of output control consistency
(OCC) [58] or local control consistency (LCC) [46, 45].

Theorem 18. If the projection Pi+Σ′ is an L(G1‖G2)-observer and
OCC (LCC) for L(G1‖G2), i = 1,2, then the composition of super-
visors contains the optimal solution, that is, supC(K,L(G1‖G2)) ⊆
supC1+Σ′ ‖ supC2+Σ′ .

However, our aim is not to compute the composition of supervisors
that we computed in parallel to obtain a single huge supervisor, but
rather to distribute the supervision to local plants. Notice that we
already have that

Lm(S1/G1‖G′) ‖ Lm(S2/G2‖G′) = Lm(S1‖S2/G1‖G2) .

But if the supervisors S1 and S2 are conflicting, we only have that

L(S1/G1‖G′) ‖ L(S2/G2‖G′)) Lm(S1‖S2/G1‖G2)

i.e., the overall supervised system is blocking. To solve nonblocking-
ness, we construct the language LC =

supC(P0(supC1+Σ′)‖P0(supC2+Σ′),P0(supC1+Σ′)‖P0(supC2+Σ′))
(3.3)

which serves as a coordinator for nonconflictingness, where the pro-
jection P0 is a supCi+Σ′ -observer, i = 1,2.

Theorem 19. The language

supC1+Σ′ ‖ supC2+Σ′ ‖ LC = supC1+Σ′ ‖ supC2+Σ′ ‖ LC

is nonconflicting (nonblocking) and controllable with respect to the
plant G1‖G2.

We can now summarize the method as an algorithm.



Theorem 20 (Solving Problem 9).

1. Verify whether there is a solution of Problem 9 using Theorem 11.
If so, stop; otherwise, continue.

2. Compute supC1+Σ′ and supC2+Σ′ as defined in (3.2).

3. Let Σ0 := Σ′ and P0 := PΣ′ .

4. Extend the alphabet Σ0 so that the projection P0 is both a
supC1+Σ′ - and a supC2+Σ′ -observer.

5. Define the coordinator C as the minimal nonblocking generator
such that Lm(C) = LC from (3.3).

We developed our approach for systems with perfect informa-
tion [22, 19] as well as for systems with partial information [17] and
implemented it in the software library libFAUDES [34].

Complexity of Verifying Nonblockingness
Nonblockingness is an important property of discrete event systems
ensuring that every task can be completed. An automaton is nonblock-
ing if every sequence of events generated by the automaton can be
extended to a marked sequence. The property is easy to verify for
deterministic automata.

Theorem 21. Given a DFA A , the problem whether A is nonblocking
is NL-complete.

If the automaton is nondeterministic, the verification becomes
computationally more demanding.

Theorem 22. Given an NFA A , the problem whether A is nonblock-
ing is PSPACE-complete.

Given a set of nonblocking automata, the modular nonblockingness
problem asks whether the parallel composition of all the automata of
the set results in a nonblocking automaton.

The simplest case of the problem we consider is that there is no
interaction among the subsystems.



Theorem 23. Let J be a finite set, and let A j be a nonblocking nonde-
terministic automata over Σ j, for j ∈ J. If the alphabets are pairwise
disjoint, then the parallel composition ‖ j∈JA j is nonblocking.

In many complex systems, however, there are events that are shared
among (some of) the subsystems, and then checking nonblockingness
is in general PSPACE-complete [39]. A more fine-grained complexity
can be distinguished based on the following criteria. Let (Ai)

n
i=1 be

deterministic automata:

1. The number of automata is not restricted;

2. The number of automata is restricted by a function g(m), that
is, n≤ g(m), where m is the length of the encoding of the DFAs
A1,A2, . . . ,An;

3. The number of automata is restricted by a constant k, i.e., n≤ k.

We have shown the following result.

Theorem 24. Given nonblocking DESs (Ai)
n
i=1 with Ai over Σi, 2≤

n ≤ g(m), where m is the length of an encoding of the sequence of
automata A1,A2, . . . ,An. The problem whether ‖n

i=1Ai is nonblocking
is NSPACE(g(m) logm)-complete.

Immediate consequences are, for instance, if k is a constant and
g(m)≤ k for every m, then the problem is NL-complete, or if g(m)≤
logk m, then the problem is NSPACE(logk+1 m)-complete.

Despite the worst-case complexity, explicit model checking al-
gorithms without any special data structures work well on standard
computers for several practical systems with 100 million states [29].

We further studied the case where exactly one event is shared. An
application of this case is, for instance, in the Brandin and Wonham [2]
modular framework for timed discrete event systems, where only one
event simulating the tick of a global clock is shared and all the other
events are local [44]. Unless NP = PSPACE, nonblockingness is
computationally easier in this case.

Theorem 25. Given n≥ 2 nonblocking DESs (Ai)
n
i=1 with Ai over Σi

such that |∪i 6= j (Σi∩Σ j)|= 1. Deciding whether ‖n
i=1Ai is nonblocking

is NP-complete.



MRI Scanner Example
To demonstrate our approach, we consider the model and specification
of an MRI scanner presented by Theunissen [51]. The plant consists
of four parts

VAxis ‖ HAxis ‖ HVNormal ‖ UI.

The specification consists of the parts

VReq ‖ HReq ‖ HVReq ‖ UIReq

and is not conditionally decomposable with respect to the four alpha-
bets of the four parts of the system.

VReq is a specification that concerns the plant VAxis. VReq has
12 states and 44 transitions, VAxis has 15 states and 50 transitions. A
monolithic approach was used to compute a supervisor with 15 states
and 36 transitions.

HReq is a specification that concerns the plant HAxis. HReq
has 112 states and 736 transitions, HAxis has 128 states and 1002
transitions. A monolithic approach results in a supervisor with 80
states and 320 transitions.

The specification HVReq (7 states and 35 transitions) concerns
the plant VAxis ‖ HAxis ‖ HVNormal. We computed a coordinator
for safety consisting of 160 states and 1287 transitions and three
supervisors with 516, 1132 and 283 states and 3395, 10298 and 1692
transitions, respectively. In comparison, the monolithic plant VAxis ‖
HAxis ‖ HVNormal has 1920 states and 23350 transitions.

The specification UIReq (256 states and 2336 transitions) concerns
the whole plant VAxis ‖ HAxis ‖ HVNormal ‖ UI. We computed a
coordinator with 4 states and 30 transitions, and four supervisors with
432, 768, 12, and 96 states and 3488, 6652, 74 and 808 transitions,
respectively. In comparison, the monolithic plant VAxis ‖ HAxis ‖
HVNormal ‖ UI has 3840 states and 75500 transitions.

Altogether, while the minimal monolithic supervisor for the whole
system consists of 68672 states and 616000 transitions, we have com-
puted 9 supervisors with altogether 3334 states and 26763 transitions.



Systems without a Modular Structure

The abstraction of timed automata into region automata as well as the
discretization of hybrid systems do not preserve the modular structure.
The original structure of a system is thus lost and we have to face
the decentralized supervisory control problem instead of the modular
supervisory control problem.

Decentralized supervisory control was developed by Rudie and
Wonham [40] based on the idea to distribute the actuator and sensor
capabilities among several local supervisors. Each supervisor issues
a control decision according to its observation and the global control
action is given by a fusion rule of local control actions.

There are several different control policies based on two elemen-
tary ones: conjunctive and permissive (C & P) and disjunctive and
antipermissive (D & A). For any decentralized control architecture, a
corresponding notion of coobservability was proposed, which together
with controllability form the necessary and sufficient conditions to
achieve a specification by the controlled system.

Almost all results available in the literature so far are only exis-
tential. We showed how to compute a controllable and coobservable
sublanguage using additional communications among the supervisors.
Our study is motivated by the relationship between decentralized and
modular supervisory control and their key concepts – coobservability
and separability. We improve an existing approach based on the con-
current (separable) over-approximation where both the system and the
specification are replaced with their infimal separable superlanguages.
However, in the likely case the specification fails to be separable, the
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existing approach only computes a solution for this new specification,
which often fails to be included in the specification, and hence safety
is not fulfilled [15]. In our work, we overcome this issue by mak-
ing the specification separable via communication (using conditional
decomposability).

Decentralized Supervisory Control
A controlled generator over an alphabet A is a structure

(G,(Ac,i)
n
i=1,(Ao,i)

n
i=1)

where G is a generator over A, Ac,i ⊆ A are sets of locally controllable
events, and Ao,i ⊆ A are sets of locally observable events. Let Ac =⋃n

i=1 Ac,i denote the set of controllable events, Ao =
⋃n

i=1 Ao,i the set
of observable events, Auc = A \Ac the set of uncontrollable events,
and Auo = A\Ao the set of unobservable events. Projections to locally
observable events Ao,i are denoted by Po,i : A∗→ A∗o,i.

Let Γi = {X ⊆ A | X ⊇ (A\Ac,i)} be a set of local control patterns.
A supervisor Si is a mapping Si : Po,i(L(G))→ Γi, where Si(s) is the
set of locally enabled events if Si observes s ∈ A∗o,i. The global control
law S is the conjunction of local supervisors Si given by

S(w) =
n⋂

i=1

Si(Po,i(w))

for w ∈ A∗.
The control law of local supervisors associated to the C & P ar-

chitecture is called permissive, since the default action is to enable
an event whenever a supervisor has an ambiguity what to do with it.
Specifically, the control law of supervisor Si on s is defined as

Si(s) = (A\Ac,i)∪{a∈ Ac,i | ∃s′ ∈K s.t. Po,i(s′) = Po,i(s) & s′a∈K}.

With the permissive local policy, we always achieve all words in the
specification. The concern is then safety, expressed by coobservability.



The idea of our approach is to compute local languages (supervi-
sors) Ri over Bi such that their synchronous product R = ‖n

i=1Ri is
a sublanguage of K controllable and coobservable with respect to L.
Although there are well-known conditions on local languages in mod-
ular supervisory control that ensure that their synchronous product is
controllable, conditions on local languages that ensure coobservability
of their synchronous product were not known. We identify two such
sufficient conditions.

Theorem 26. Let L be a prefixed-closed language over B =
⋃n

i=1 Bi
and assume that Bo,i ∩Bc ⊆ Bc,i, for i = 1, . . . ,n. Let M ⊆ L be a
language such that M = ‖n

i=1Mi, where Mi is a language over Bi. If

1. either Mi is normal with respect to Pi(L) and Pi
o,i, for all i =

1, . . . ,n,

2. or Bc ⊆ Bo and Mi is observable with respect to Pi(L) and Pi
o,i,

for all i = 1, . . . ,n,

then M is coobservable with respect to L and (Bo,i)
n
i=1.

The way we compute the languages Ri is as follows. We decom-
pose specification K in such a way that K = ‖n

i=1Ki, where Ki are
languages over Bi, and over-approximate L by the synchronous prod-
uct of its projections Pi(L) on alphabets Bi. The condition required on
K does not always hold and is equivalent to the notion of separability.
The languages Ri are then computed locally as sublanguages or super-
languages of Ki that satisfy the sufficient conditions that make their
synchronous product R controllable, coobservable and included in K.

Consider the settings of decentralized control, and let (Σi)
n
i=1 be

extensions of local alphabets (Ao,i)
n
i=1, such that the specification K is

separable with respect to (Ao,i∪Σi)
n
i=1. This can be computed using

conditional decomposability.

Assumption 27. For i = 1,2, . . . ,n, let Pi+Σi denote the projection
from A∗ to (Ao,i ∪ Σi)

∗. Let Ri be languages that are controllable
with respect to projection Pi+Σi(L) of the plant language L to alphabet
Ao,i∪Σi and locally uncontrollable events (Ao,i∪Σi)uc = (Ao,i∪Σi)∩



Auc such that their synchronous product R = ‖n
i=1Ri is included in K.

Furthermore, we assume that Ri are

1. either normal with respect to Pi+Σi(L) and Ao,i∪Σo,i,

2. or observable with respect to Pi+Σi(L) and Ao,i ∪Σo,i, and all
controllable events are observable (Ac ⊆ Ao).

We now state our main result showing how to use our framework
to compute a controllable and coobservable sublanguage. An im-
portant feature of our computation is that we automatically obtain a
coobservable sublanguage.

Theorem 28. Consider Assumption 27. If the languages Ri are syn-
chronously nonconflicting (in particular, if they are prefix-closed), then
R = ‖n

i=1Ri is a sublanguage of K controllable with respect to L and
coobservable with respect to L and (Ao,i∪Σo,i)

n
i=1.

There are many ways how to compute the languages Ri. In the
case of full local observations, it is natural to define the language

Ri = supCi+Σi
= supC(Pi+Σi(K),Pi+Σi(L)) (4.1)

as the supremal controllable sublanguage of Pi+Σi(K). In the case of
partial observations, we may define the language

Ri = supCN(Pi+Σi(K),Pi+Σi(L),(Ao,i∪Σi)uc)

as the supremal controllable and normal sublanguage of Pi+Σi(K) [6, 3].
Similarly, if Ac ⊆ Ao, we can define Ri as the supremal controllable
and relatively observable sublanguage [5, 20], or we can use any of
the methods to compute a controllable and observable sublanguage
discussed in the literature [9, 50, 56]. In these cases, we have that
Ri ⊆ Pi+Σi(K), and separability of K then implies that the synchronous
product ‖n

i=1Ri is included in K as required.
However, we do not restrict language Ri to be included in Pi+Σi(K).

This allows us to define Ri in many different ways. For instance, we
can define Ri as the infimal controllable (and normal/observable)



superlanguage of Pi+Σi(K) as discussed in the literature [6, 24, 26, 41].
We can further combine the approaches so that one of the Ri can be
computed as a sublanguage and another one as a superlanguage, etc. In
such a case, we do not get the assumption ‖n

i=1Ri ⊆ K by construction,
but we need to check it, which is in general a PSPACE-complete
problem. On the other hand, the advantage it brings is a potentially
better (larger) solution.

Another problem with infimal controllable superlanguages is that
they do not exist for general languages, but only for prefix-closed
languages. This issue can be avoided by the following choice of Ri
based on the computation of prefix-closed superlanguages.

Lemma 29. Let Ti be the prefix-closed infimal controllable (and nor-
mal/observable) superlanguage of Pi+Σi(K). Then Ri = Pi+Σi(K)∪
[Ti \Pi+Σi(K)] is controllable (and normal/observable).

We further discussed conditions under which the solution is op-
timal in the sense of maximal permissiveness. Since no centralized
optimal solution exists in the case of partial observations, we restrict
our attention to the case of full observations.

Theorem 30. Let K ⊆ L be prefix-closed languages, and let K and L
be separable with respect to (Ao,i ∪Σi)

n
i=1. Let supCi+Σi

be defined
in (4.1). If Pi+Σi(L) and Pj+Σ j(L) are mutually controllable [27],
for i, j = 1,2, . . . ,n, then ‖n

i=1supCi+Σi
= supC(K,L) is coobservable

with respect to L and (Ao,i∪Σi)
n
i=1.

Depending on the system, mutual controllability may be a strong
condition. We now present a result that ensures optimality and is based
on the notions of an L-observer and local control consistency (LCC).

Theorem 31. If every projection Pi+Σi is an L-observer and LCC for
L, and the languages supCi+Σi

defined in (4.1) are synchronously
nonconflicting (e.g., prefix-closed), then the language ‖n

i=1 supCi+Σi
=

supC(K,L) is coobservable.

A similar result to Theorem 31 can be obtained for supremal
controllable and normal sublanguages [17].



The theorems require that the local languages Ri are synchronously
nonconflicting. The remaining question is thus the case of conflicting
local supervisors.

Theorem 32. Let LC ⊆ ‖n
i=1PΣ′(Ri) be a language that is controllable

and normal (observable) with respect to PΣ′(L), Σ′uc and Σ′o, where
Σ′ ⊆ A contains all events shared by any pair of Ri and R j, for i 6= j,
and PΣ′ : A∗→ Σ′∗ is an Ri-observer, for i = 1, . . . ,n. If (Ao,i∪Σo,i∪
Σ′o)∩Ac ⊆ (Ac,i∪Σc,i∪Σ′c), then ‖n

i=1(Ri ‖ LC) is a sublanguage of K
controllable (and normal/observable) that is coobservable, and whose
components are synchronously nonconflicting.

In case of full observations, we strengthen the previous result by
computing the language LC as a sublanguage of ‖n

i=1PΣ′(Ri) control-
lable with respect to ‖n

i=1PΣ′(Ri) rather than to PΣ′(L), which may
result in a larger language LC because ‖n

i=1PΣ′(Ri)⊆ PΣ′(L).

Theorem 33. Let LC be the supremal sublanguage of ‖n
i=1PΣ′(Ri)

that is controllable with respect to ‖n
i=1PΣ′(Ri) and Σ′uc, where Σ′ ⊆ A

contains all events shared by any pair of Ri and R j, for i 6= j, and
PΣ′ : A∗→ Σ′∗ is an Ri-observer, for i = 1, . . . ,n. If every projection
Pi+Σi is an L-observer and LCC for L, and the projection PΣ′ is LCC for
‖n

i=1Ri, then ‖n
i=1(Ri ‖ LC) = supC(K,L) is coobservable with respect

to L and (Ao,i ∪ Σi ∪ Σ′)n
i=1, whose components are synchronously

nonconflicting. It is again under the assumption that (Ao,i∪Σi∪Σ′)∩
Ac ⊆ (Ac,i∪Σc,i∪Σ′c).



Controllability of Context-Free Systems

Sreenivas [49] has shown that controllability is undecidable for sys-
tems with undecidable inclusion (if equivalence is also undecidable).
However, there are systems, such as deterministic pushdown automata,
for which inclusion is undecidable and equivalence is decidable. For
such systems, it is undecidable whether K ⊆ L, but if we have some
additional knowledge that the languages are in the inclusion K ⊆ L,
the results of Sreenivas cannot be used to show undecidability of con-
trollability for two deterministic context-free languages. This problem
was open in the literature [11].

We solved this problem by showing that although equivalence is
decidable for deterministic context-free languages, controllability is
undecidable even if the containment of the specification language in
the plant language is known.

Theorem 34. Controllability is undecidable for two deterministic
(linear) context-free languages K and L, where L is prefix-closed, even
if K ⊆ L.

Because of these undecidability results, the only possibilities which
deserve consideration in supervisory control of discrete event systems
are:

1. the specification language K is regular and the plant language L
is (deterministic) context-free, or

2. the specification language K is deterministic context-free and
the plant language L is regular.
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The later case has recently been treated in the literature [10, 11,
12, 47] while the former approach still waits for its investigation.

By the closure properties of regular and context-free languages, the
language KΣu is regular, and KΣu∩L is context-free. Since the control-
lability property KΣu∩L⊆ K is equivalent to the emptiness problem
(KΣu ∩ L)∩ (Σ∗ \K) = /0, and the language (KΣu ∩ L)∩ (Σ∗ \K) is
context-free, decidability of controllability follows from decidability
of the emptiness problem for context-free languages, and hence con-
trollability is decidable for the former case. The complexity still needs
to be investigated.

These approaches are of interest because they present an opportu-
nity to treat the most interesting problem of the current supervisory
control theory of discrete event systems, the state-space explosion
problem, so that we can describe the plant language or the speci-
fication language by a more concise representation which is up to
exponentially smaller when using deterministic pushdown automata
instead of finite-state machines.



Properties of Modular DESs

Detectability, opacity and fault diagnosability are important system-
theoretic properties of discrete event systems. Detectability arises in
the state estimation of DES [48]. Opacity is a property related to the
privacy and security analysis of DES [13]. Fault diagnosis is another
important task in DES. Several different notions of diagnosability
have been proposed in the literature [57]. For example, the notion
of diagnosability of Sampath et al. [43] requires that an occurrence
of a fault can always be detected within a finite delay. Thorsley and
Teneketzis [52] proposed a weaker version of diagnosability, called
A-diagnosability. Compared to diagnosability, where the fault has
to be detected on every path within a finite delay, A-diagnosability
requires that there always exists a possibility to detect the fault event,
and hence the probability of detection goes to one as the length of the
trajectory increase.

Deciding weak detectability, opacity and A-diagnosability are
PSPACE-complete problems for monolithic systems. However, their
complexity was open for modular systems. We resolved these ques-
tions.

Modular Detectability
Let Σ be an alphabet, Σo ⊆ Σ be the set of observable events, and P
be the projection from Σ to Σo. Let N denote the set of all natural
numbers. The set of infinite sequences of events generated by a DES G
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is denoted by Lω(G). For w ∈ Lω(G), we denote the set of its prefixes
by Pr(w).

A DES G = (Q,Σ,δ , I) is strongly detectable with respect to Σuo
if we can determine, after a finite number of observations, the current
and subsequent states of the system for all trajectories of the system,
that is,

(∃n ∈ N)(∀s ∈ Lω(G))(∀t ∈ Pr(s))
[
|P(t)|> n⇒ |RG(t)|= 1

]
where RG(t) = {x ∈ Q | ∃ t ′ ∈ L(G) such that P(t) = P(t ′) and x ∈
δ (I, t ′)}. It is strongly periodically detectable with respect to Σuo
if we can periodically determine the current state of the system for all
trajectories of the system, that is,

(∃n ∈ N)(∀s ∈ Lω(G))(∀t ∈ Pr(s))(∃t ′ ∈ Σ
∗)[

tt ′ ∈ Pr(s)∧|P(t ′)|< n∧|RG(tt ′)|= 1
]
.

The modular version of the problems is defined as follows.

Definition 35. Given a set of discrete event systems {G1,G2, . . . ,Gn}
and a set of unobservable events Σuo. The strong (periodic) modular
detectability problem asks whether the DES G1‖G2‖· · ·‖Gn is strongly
(periodically) detectable with respect to Σuo.

Deciding strong modular detectability is a PSPACE-hard problem.
Our result improves this lower bound by showing that polynomial
space is sufficient to solve the problem.

Theorem 36. Deciding strong (periodic) modular detectability is a
PSPACE-complete problem.

Strong detectability requires that one can always determine the
current state of the system unambiguously after a finite number of
observations. A weaker version of detectability, weak detectability,
requires that one can determine the current state of the system for
some trajectory.

A DES G = (Q,Σ,δ , I) is weakly detectable with respect to Σuo if
we can determine, after a finite number of observations, the current



and subsequent states of the system for some trajectories of the system,
that is,

(∃n ∈ N)(∃s ∈ Lω(G))(∀t ∈ Pr(s))
[
|P(t)|> n⇒ |RG(t)|= 1

]
.

It is weakly periodically detectable with respect to Σuo if we can peri-
odically determine the current state of the system for some trajectories
of the system, that is,

(∃n ∈ N)(∃s ∈ Lω(G))(∀t ∈ Pr(s))(∃t ′ ∈ Σ
∗)

[tt ′ ∈ Pr(s)∧|P(t ′)|< n∧|RG(tt ′)|= 1] .

Similarly as strong (periodic) modular detectability we define weak
(periodic) modular detectability.

Definition 37. Given a set of discrete event systems {G1,G2, . . . ,Gn}
and a set of unobservable events Σuo. The weak (periodic) modular de-
tectability problem asks whether the system G1‖G2‖· · ·‖Gn is weakly
(periodically) detectable with respect to Σuo.

Deciding weak modular detectability is a PSPACE-hard problem,
however the complexity was left open. We showed that the problem
requires exponential space.

Theorem 38. Deciding weak (periodic) modular detectability is an
EXPSPACE-complete problem.

In some cases, the projection erases only private events. This, for
instance, ensures that the projection commutes with parallel composi-
tion, that is, P(Lm(G1‖G2)) = P(Lm(G1)) ‖ P(Lm(G2)). We showed
that under this assumption, deciding weak modular detectability is a
simpler problem.

Theorem 39. Let {G1,G2, . . . ,Gn} be a set of discrete event systems
and P : Σ→ Σo be a projection such that all shared events of any two
systems are included in Σo. Then deciding weak (periodic) modular
detectability is PSPACE-complete.



Modular Opacity
Opacity is a property related to the privacy and security analysis of
DES. The system has a secret modeled as a set of states and an intruder
is modeled as a passive observer with limited observation. The system
is opaque if the intruder never knows for sure that the system is in a
secret state, i.e., the secret is not revealed.

A DES G = (Q,Σ,δ , I) is current-state opaque with respect to Σuo
and a set of secret states QS ⊆ Q if (∀s ∈ L(G))[RG(s) 6⊆ QS]. The
modular version of the problem is defined as follows.

Definition 40. Given a set of discrete event systems {G1,G2, . . . ,Gn},
a set of unobservable events Σuo, and a set of secret states QS. The
modular opacity problem asks whether the system G1‖G2‖· · ·‖Gn is
opaque with respect to Σuo and QS.

Theorem 41. Deciding modular opacity is an EXPSPACE-complete
problem.

Theorem 42. Let {G1,G2, . . . ,Gn} be a set of discrete event systems
and P : Σ→ Σo be a projection such that all shared events of any
two systems are included in Σo. Then deciding modular opacity is
PSPACE-complete.

Modular A-Diagnosability
Let ΣF ⊆ Σ be a set of fault events, and let LF = Σ∗ΣF Σ∗ be the set of
all trajectories that contain a fault event. The goal of fault diagnosis
is to detect the occurrence of fault events. Several different notions
of diagnosability have been proposed in the literature. For example,
the diagnosability problem of Sampath et al. [43] requires that the
occurrence of a fault can always be detected within a finite delay. This
problem is polynomial-time decidable for monolithic systems and
PSPACE-complete for modular systems.

Thorsley and Teneketzis [52] proposed a weaker version of di-
agnosability, A-diagnosability. Compared to diagnosability, where a
fault has to be detected on every path after it happens within a finite



delay, A-diagnosability requires that for any path that contains a fault
event, it always has an extension where a fault can be detected.

A DES G = (Q,Σ,δ , I) is A-diagnosable with respect to Σuo and
ΣF if for any fault trajectory, there exists an extension under which a
fault event has occurred, that is,

(∀s ∈ L(G)∩LF)(∃t ∈ L(G)/s)[P−1P(st)∩L(G)⊆ LF ],

where L(G)/s = {t ∈ Σ∗ | st ∈ L(G)}. Intuitively, A-diagnosability
says that after the occurrence of any fault, we can detect the occurrence
of a fault with probability one.

The modular version of the problem is defined as follows.

Definition 43. Given a set of discrete event systems {G1,G2, . . . ,Gn},
a set of unobservable events Σuo, and a set of fault events ΣF . The
modular A-diagnosability problem asks whether the discrete event
system G1‖G2‖· · ·‖Gn is A-diagnosable with respect to Σuo and ΣF .

Bertrand et al. [1] and Chen et al. [7] have shown that testing
A-diagnosability is PSPACE-complete for monolithic systems. We
showed that the problem is EXPSPACE-complete for modular systems.

Theorem 44. Deciding modular A-diagnosability is EXPSPACE-com-
plete.

Theorem 45. Let {G1,G2, . . . ,Gn} be a set of discrete event systems
and P : Σ→ Σo be a projection such that all shared events of any two
systems are included in Σo. Then deciding modular A-diagnosability
is PSPACE-complete.
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[14] G. Jirásková and T. Masopust. On a structural property in the
state complexity of projected regular languages. Theoretical
Computer Science, 449:93–105, 2012.

[16] J. Komenda and T. Masopust. Computation of controllable
and coobservable sublanguages in decentralized supervisory
control via communication. Discrete Event Dynamic Systems,
27(4):585–608, 2017.

[17] J. Komenda, T. Masopust, and J. van Schuppen. Synthesis of
controllable and normal sublanguages for discrete-event systems
using a coordinator. Systems & Control Letters, 60(7):492–502,
2011.

[19] J. Komenda, T. Masopust, and J. van Schuppen. Coordination
control of discrete-event systems revisited. Discrete Event
Dynamic Systems, 25(1-2):65–94, 2015.

[21] J. Komenda, T. Masopust, and J. H. van Schuppen. On condi-
tional decomposability. Systems & Control Letters, 61:1260–
1268, 2012.

30



[22] J. Komenda, T. Masopust, and J. H. van Schuppen. Supervisory
control synthesis of discrete-event systems using a coordination
scheme. Automatica, 48(2):247–254, 2012.

[23] J. Komenda, T. Masopust, and J. H. van Schuppen. On a dis-
tributed computation of supervisors in modular supervisory con-
trol. In Conference on Complex Systems Engineering (ICCSE),
pages 1–6, 2015.

[30] T. Masopust. A note on controllability of deterministic context-
free systems. Automatica, 48(8):1934–1937, 2012.

[31] T. Masopust. Complexity of infimal observable superlanguages.
IEEE Transactions on Automatic Control 63(1), 249–254, 2018.

[32] T. Masopust. Complexity of verifying nonblockingness in
modular supervisory control. IEEE Transactions on Automatic
Control 63(2), 602–607, 2018.

[33] T. Masopust and X. Yin. Complexity of Detectability, Opacity
and A-Diagnosability for Modular DES. 2017. Submitted
manuscript, after revision.



Bibliography

[1] N. Bertrand, S. Haddad, and E. Lefaucheux. Foundation of
diagnosis and predictability in probabilistic systems. In FSTTCS,
volume 29 of LIPIcs, pages 417–429, 2014.

[2] B. Brandin and W. Wonham. Supervisory control of timed
discrete-event systems. IEEE Trans. Automat. Control, 39:329–
342, 1994.

[3] R. D. Brandt, V. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M.
Wonham. Formulas for calculating supremal controllable and
normal sublanguages. Systems & Control Letters, 15:111–117,
1990.

[4] H. J. Bravo, A. E. C. Da Cunha, P. Pena, R. Malik, and J. E. R.
Cury. Generalised verification of the observer property in discrete
event systems. In WODES, pages 337–342, 2012.

[5] K. Cai, R. Zhang, and W. M. Wonham. Relative observability
of discrete-event systems and its supremal sublanguages. IEEE
Trans. Automat. Control, 60:659–670, 2015.

[6] C. Cassandras and S. Lafortune. Introduction to discrete event
systems. Springer, second edition, 2008.

[7] J. Chen, C. Keroglou, C. N. Hadjicostis, and R. Kumar. Revised
test for stochastic diagnosability of discrete-event systems. IEEE
Transactions on Automation Science and Engineering, 15:404–
408, 2018.

32



[8] L. B. Clavijo and J. C. Basilio. Empirical studies in the size
of diagnosers and verifiers for diagnosability analysis. Discrete
Event Dynamic Systems, 27:701–739, 2017.

[9] J. Fa, X. Yang, and Y. Zheng. Formulas for a class of con-
trollable and observable sublanguages larger than the supremal
controllable and normal sublanguage. Systems & Control Letters,
20:11–18, 1993.

[10] C. Griffin. A note on deciding controllability in pushdown sys-
tems. IEEE Trans. Automat. Control, 51:334–337, 2006.

[11] C. Griffin. Decidability and optimality in pushdown control
systems: a new approach to discrete event control. PhD thesis,
Penn State University, 2007.

[12] C. Griffin. On partial observability in discrete event control with
pushdown systems. In ACC, pages 2619–2622, 2010.

[13] R. Jacob, J.-J. Lesage, and J.-M. Faure. Overview of discrete
event systems opacity: Models, validation, and quantification.
Annual Reviews in Control, 41:135–146, 2016.
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