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1 Summary

The thesis focuses on multiscale hierarchical modeling of hydrating concrete. Concrete is the

most man-made material in the world, annually exceeding 1.5 cubic meter for every person on

the Earth. Concrete represents a multiscale material, spanning lengths from atomic scale to

tenths of meters. Nowadays, its production utilizes cement, water, fine aggregates, coarse ag-

gregates, admixtures, and supplementary cementitious materials which extends material com-

plexity even further. Besides that, concrete often takes a shape of structural elements, adding

structural scale to the material.

Recent advances in experimental and numerical techniques during the last decades helped

us to step down on sub-micrometer scale. The thesis demonstrates four areas where multiscale

approach brings new insight and predictive capabilities:

• Hydration models - Section 4

• Elasticity - Section 5

• Viscoelasticity - Section 6

• Heat transport - Section 7

Hydration models are presented by CEMHYD3D and affinity models, calibrated for exper-

imental data. Their performance is validated by means of isothermal calorimetry. Both models

show excellent prediction for hydration heat and volume phases during hydration. CEMHYD3D

provides 3D microstructure of cement paste at the resolution of 1 µm, suitable for further nu-

merical homogenization techniques.

Elasticity evolution during concrete hydration is explored using continuum and numerical

micromechanics. The concept of strain localization in heterogeneous microstructure leads to

bounds and estimates. Eshelby’s finding that strain remains constant in ellipsoidal inclusions

led to Mori-Tanaka and self-consistent schemes. Numerical methods are represented by finite

elements and FFT-based methods on periodic microstructures.

Creep is explored by means of downscaling to identify intrinsic creep of C-S-H. A macro-

scopic B3 creep model is recalibrated for C-S-H, showing much larger creep on C-S-H scale

than on the cement paste. FFT-based method is extended for viscoelastic homogenization and

continuum micromechanics transfers C-S-H creep to the scale of concrete.

Heat transport and temperature rise in hydrating concrete belongs to classical challenges

in massive concrete structures. This task was formulated as a multiscale problem where pre-

dicted released heat from the scale of cement paste is upscaled to the scale of structure. Since

the coupling is nonlinear, numerical solution is employed on both scales. Several validations

show excellent temperature predictions in various concrete mix designs. This multiscale model
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was further incorporated into ConTemp - A virtual thermo-mechanical simulator for hydrat-

ing reinforced concrete blocks. Currently, the tool is used in 20 countries around the world

by LafargeHolcim company, assisting in mix design and optimization of massive concrete by

engineers.

Extension to localized phenomena, such as strength predictions, presents a challenging task

due to strain localization on different scales. Accessing strength properties on a sub-micrometer

scale and formulating multiscale models belong to current research activities.
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2 Introduction

Concrete is the most produced man-made material in the world, annually exceeding 1.5 cubic

meter for every person on the Earth. Fig. 1 compares concrete production with other common

materials in the world, showing its dominant role.

Figure 1: Annual production and price for common materials in 1990’s [35]

The term “concrete” symbolizes a wide range of composite materials having normally com-

pliant matrix (chemically based on calciumsilicates, aluminosilicates, asphalt, sulphur etc.) with

stiff inclusions (aggregates, fillers). The thesis focuses further mainly on the matrix derived

from Portland cement (calcium-silicates), which constitutes the most common building mate-

rial used today in civil engineering. The majority of chemical and mechanical changes occur

during maturing, or hydration, which controls final properties of concrete.

A brief history of concrete ancestors starts with Assyrians, Babylonians, Chinese and Egyp-

tians who used clay or lime materials several thousands years BC. Around 200 BC, the Romans

started to use pozzolanic volcanic ash which significantly improved material durability and such

material had hardened under water. Little progress occurred during the middle ages until the

mid of 18th century, when John Smeaton from England discovered excellent properties of ce-

ment made from clay-rich limestone. He rebuilt Eddystone Lighthouse in Cornwall, England.

Vicat prepared artificial hydraulic lime in 1812-13 from synthetic mixture of limestone and clay.

Contemporary concrete stems from Joseph Aspdin’s patent from 1824. He patented Port-

land cement, named after the building stones quarried at Portland, England. Joseph Monier

reinforced flower pots in 1867 with iron bars, laying foundations for reinforced concrete. In

1887, Henri Le Chatelier established oxide ratios for proper dosing of lime to produce Portland

cement. He is considered a founder of modern cement chemistry. The gypsum was introduced

in 1890 in the USA to act as a retardant of concrete setting. In 1930, the entrained air was firstly

used to decrease freeze-thaw damage.
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In 1940’s Powers and Brownyard formulated macroscopic hydration model that was able

to quantify hydration products and separate non-evaporable, gel, and capillary water in the

matrix [43]. Neville summarized the comprehensive knowledge about concrete in his famous

book in 1963, reprinted and extended several times [38]. Lea from 1935 and Taylor from

1963 summarized knowledge of cement chemistry resulting in other well-known books, several

times reprinted [32, 59]. The silica fume, as a pozzolanic additive, and superplasticizers were

introduced in 1980’s.

Scientific and technological efforts, since patenting Portland cement in 1824, resulted in a

deeper understanding of contemporary concrete and in mastering its production and technology.

Developments in the last 50 years have brought a common use of plasticizers, admixtures and

supplementary cementitious materials, which gave birth to high performance concretes. These

high-tech and fire-resistant materials started replacing steel columns in skyscrapers, unimagin-

able just 50 years ago.

2.1 Challenges in structural concrete

Extensive application of concrete worldwide revealed several problems associated with a lack

of fundamental knowledge on different scales. Common areas of challenges include:

Heat of hydration as the result of exothermic chemical reactions. Since heat energy dissipa-

tion approximately relates to the square of specimen’s size, temperature rise presents a

serious problem in massive structures where dimensions exceed approximately 0.5 m and

where cracks easily form during a cooling stage.

Slow strength evolution in blended systems made from Portland clinker and supplementary

cementitious materials (SCMs) such as slag, fly ash, calcined clay, or other byproducts.

The reactivity of SCMs is usually low and strength gain delayed.

Concrete creep plays role in long-term performance of structures (bridge deflection, prestress

loss, shortening of columns in high-rise buildings). It has been found that concrete creep

cannot be simply assessed with accelerated laboratory tests and to cover easily wide vari-

ations in concrete composition [45].

Reinforcement corrosion due to a loss of alkaline concrete environment or ingress of aggres-

sive ions. Carbonation and chloride ingress represent the most common processes leading

to the corrosion of reinforcing steel. The induction period is largely influenced by matrix

porosity, its chemical composition and cracks in the cover layer of concrete.
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Reduced creep and ductility caused by increased concrete strength. Brittleness is generally

proportional to the square of tensile strength. In applications controlled by deforma-

tions (drying shrinkage, temperature, slabs on elastic foundations), stronger concrete

withstands generally lower deformation due to steeper strain softening curve, leading

to cracking.

Multiscale methods can tackle those challenges from experimental and numerical model-

ing. From the pioneering work “Numerical concrete” by Roelfstra [46], many scientists and

organizations followed multiscale simulations, such as the Virtual Cement and Concrete Test-

ing Laboratory at the National Institute of Standards and Technology (NIST), USA [10], or

DuCOM platform for simulating concrete durability [34], to mention a few.

3 Multiscale modeling approach

Multiscale methods exploit the fact that different mechanisms or morphologies may exist on

different scales of observation. Material heterogeneity is often encountered, either in a form

of chemically distinct materials or of the same material in different states such as polycrystals.

Concrete is a typical representative of multiscale materials, in which well-established scales

span at least eight orders of magnitude. The complexity of cement-based materials is demon-

strated in Fig. 2 in various morphologies and scales.

Figure 2: Multiscale nature of concrete. Images by L. Kopecký (CTU in Prague) and M.K.

Head (Imperial College London).

Scale separation in heterogeneous materials can be introduced in many ways. For the case

of cement-based materials, five levels were generally accepted, originating from a coincidence

with experimental techniques applied[12]:
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C-S-H level typically spans a characteristic length between 10 nm – 1 µm. At least two mor-

phologies of C-S-HLD and C-S-HHD were identified.

Cement paste level is found on a resolution between 1 µm – 100 µm. Clinker minerals, gyp-

sum, CH, homogenized C-S-H and some capillary porosity are recognizable at this reso-

lution [12].

Mortar level is considered on a scale between 1 mm and 1 cm. It contains homogenized

cement paste, fine aggregates such as sand and associated ITZ. Air voids may be present

as well.

Concrete level spans, in a typical structural concrete, a characteristic length of 1 cm – 1 dm.

Homogenized mortar, coarse aggregates such as gravel, and associated ITZ are typically

observed.

Structural level represents a structural element in the shape of column, beam, or slab. These

elements have dimensions typically above 1 dm. Structural engineers are familiar with

this level, where concrete is treated as a continuum. The structural level addresses real

environmental boundary conditions.

Generally, multiscale methods aim at data transfer across scales. Depending on a solution

strategy, the multiscale methods are classified into two broad groups. Hierarchical methods

represent the first category and originate from three assumptions; scale separation, uniformity

of the macroscopic field in the vicinity of a material point, and local periodicity, see Fig. 3.

Figure 3: Local periodicity and different volume elements in the vicinity of material points.

The solution proceeds from a value of the macroscopic field, which is passed to the lower

scale where it is used to establish the boundary conditions of the microproblem. Homogeniza-

tion of the microproblem yields an effective property, which is passed back to the material point
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on a higher scale. The material point often corresponds to the integration point of FE. At the

end, sequential processing of many sub-problems leads to the solution of the macroproblem.

The scheme is often enhanced with iterations between scales so equilibrium is reached on both

scales.

Hierarchical methods are perfectly suited to the prediction of non-localized phenomena,

such as elasticity or hardening plasticity [11, 18, 31]. Predictive capabilities can be extended

when macro-field gradients also are transferred to the microscale [31]. On the other hand,

hierarchical methods are generally unjustified for the prediction of the softening fracturing be-

havior. Complications arise due to the fact that damage localization and the associated material

characteristic length on both the macroscale and subscale become easily incompatible with the

imposed boundary conditions. Localization limiters, such as the crack band of the non-local ap-

proach, bring a remedy, but weaken the predictive capabilities of such multiscale simulations.

In the hierarchical methods, the bridging of adjacent scales may be chained many times

over, as demonstrated in Fig. 2. Depending on the direction of the scale transfer, two strategies

are commonly used:

Upscaling of constituent properties from a lower to a higher scale. Data from the lower scale

are compressed into effective properties. For example, the elasticity of mortar has its ori-

gin in the cement paste and fine aggregates. Thus combining these two materials together

results in an effective mortar property.

Downscaling occurs less frequently and implies data acquisition. Knowing a macroscale prop-

erty raises the question of how each constituent contributes. A typical example is the

inverse analysis of C-S-H creep from creep tests. Once the assumption that creep local-

izes in C-S-H is adopted, one aims to filter out the elastic components within the cement

paste and thus to identify intrinsic C-S-H creep. Under normal circumstances, only aver-

age properties are identified.

The second group, known as concurrent methods, apply substructuring techniques which

lead to one simultaneous solution of all equations [44, 19, 23, 57, 26]. These can be decomposed

further for multiple processing, known as domain-decomposition methods [17, 64]. A typical

example of a concurrent method is the analysis of a cracking body, where large macroscale

elements are replaced with the underlying microstructure based on crack propagation. In this

method, the regions of interest are captured with sufficient microstructural details while large

macroscale elements substitute distant areas [55].
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4 Cement hydration models

Cement hydration models play important part in multiscale simulation of hydrating concrete

on the scale of cement paste. They generally predict degree of hydration, volumetric evolution

of phases (cement minerals, hydration products, water, capillary porosity), released heat while

taking into account water availability and temperature evolution. In addition, 2D/3D models

show topographical evolution of microstructure, suitable for numerical modeling.

The first consistent model of cement hydration belongs to Powers and Brownyard [43]. They

set up equations for evolving chemical phases, particularly unreacted cement, fcem, colloidal

cement gel (consisting of mainly C-S-H), fgel, and capillary porosity fcap with empty pores

fempty. Fig. 4 displays volume fractions for water-to-cement ratios wcr = 0.3 and 0.5 under

sealed curing conditions.
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Figure 4: Evolution of chemical phases during cement hydration, for a wcr = 0.3 and 0.5

under sealed curing conditions. Voids correspond to chemical shrinkage. They may be

resaturated when external water is available.

4.1 CEMHYD3D hydration model

CEMHYD3D represents one of the most advanced contemporary hydration models [9]. The

idea is to split the cement microstructure into voxels (volume elements), typically with a size of

1× 1× 1 µm. A flowchart of the CEMHYD3D model is depicted in Fig. 5, from microstructure

reconstruction to predicted properties.

CEMHYD3D model implements 9 reactions, each reaction associated with enthalpy, able

to predict released heat. For example, hydration of C3S proceeds as

C3S(1) + 5.3H(1.34) → C1.7SH4(1.52) + 1.3CH(0.61), 20◦C, (1)
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Figure 5: A flowchart of the CEMHYD3D model with consecutive outputs.

where numbers in parentheses quantify the volumetric amounts of each phase. Note 9% volume

chemical shrinkage. Fig. 6 shows validation on a few Portland cements.
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Figure 6: Validation for isothermal calorimetry in terms of released hydration heat.

4.2 Affinity hydration models

Affinity hydration models provide a phenomenological framework for accommodating all stages

of cement hydration. The rate of hydration can be expressed by the temperature-independent

normalized chemical affinity, Ã25(DoH), related to heat flow from isothermal calorimetry at

25◦C as Ã25(DoH) = q(t)/Qpot

dDoH(T )

dt
= Ã25(DoH) exp

[
Ea
R

(
1

273.15 + 25
− 1

T

)]
(2)

where DoH is degree of hydration, Qpot represents potential heat of hydration, and E is the

activation energy.
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Cervera et al. [14] proposed an analytical form of the normalized affinity which we modi-

fied further

Ã25(DoH) = B1

(
B2

DoH∞
+DoH

)
(DoH∞ −DoH) exp

(
−η̄ DoH

DoH∞

)
, (3)

where B1, B2 are coefficients to be calibrated, DoH∞ is the ultimate hydration degree and η̄

represents microdiffusion of free water through formed hydrates.

The affinity hydration from Eqs. (2), (3) performs well on all Portland-based cements [48,

49]. Fig. 7 validates them graphically against isothermal calorimetry data or CEMHYD3D

simulation [10].
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Figure 7: Validation of affinity hydration model on Portland-based cements.

5 Elastic homogenization of cement composites

This chapter explores an application of homogenization techniques to the cement paste and

consecutive composites such as mortar and concrete for linear elasticity [53]. The Young’s

modulus is very often found to be linear with the degree of hydration, in a wide range of wcr and

types of cement paste [16]. Till today, explanation and possible mechanism of this phenomenon

has been proposed by only a few authors and are based only on hydrating phase [16]. The

linearity is astonishing when we consider porous evolving material with the solid phases having

the difference between elastic modulus by approximately 5, not talking about curing, water

availability or temperature.
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5.1 Continuum micromechanical methods

Continuum micromechanics rely predominantly on the concept of concentration or localization.

The local stress or strain fields σ(x), ε(x) are derived directly from the macroscopic stress Σ

and strain E. This problem cannot be solved in general, so an additional assumption is made

which leads to an estimate or to a bound. In the case of estimates, the boundary conditions

of inclusion are generally unknown, so the problem is at first transformed to the problem with

homogeneous boundary conditions [22, 24]. Static uniform boundary conditions are defined as

p(x) = Σ · n, (4)

where n is the unit normal vector pointing outwards from the boundary and p are surface

tractions. For any equilibrated stress fieldσ(x), the volume average yields back a homogeneous

stress

〈σ(x)〉 =
1

V

∫
V

σ(x)dV = Σ. (5)

Similarly, a macroscopic strain can be imposed through surface displacements, or kinematic

uniform boundary conditions

u(x) = E · x, (6)

where u(x) is the microscopic displacement vector and x determines the position. For any

strain field ε(x) derived from any compatible displacement field according to Eq. (6), the

macroscopic strain then reads

〈ε(x)〉 =
1

V

∫
V

ε(x)dV = E. (7)

The homogeneous boundary conditions according to Eqs. (4), (6) enable the use of the

Hill lemma for the strain energy density, where at least the strain or stress fields satisfy the

homogeneous boundary conditions

〈σ(x) : ε(x)〉 = 〈σ(x)〉 : 〈ε(x)〉 = Σ : E. (8)

In addition, Eq. (8) is also valid for periodic boundary conditions [63]. In continuum mi-

cromechanics, the approximate microscopic stress or strain field may be linked to that on the

macroscopic scale. Strain or stress localization (concentration) tensors, A(x) and B(x), couple

the micro and macro scale. In the case of linear elasticity it yields

ε(x) = A(x) : E, (9)

σ(x) = B(x) : Σ. (10)
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Note that the spatial average of concentration tensors yields a unit tensor, according to Eqs. (5), (7)

〈A(x)〉 = 〈B(x)〉 = I. (11)

Combining Eq. (8) with Eqs. (9), (10) yields

E : Σ = 〈ε(x) : σ(x)〉 = 〈ε(x) : B(x) : Σ〉, (12)

Σ : E = 〈σ(x) : ε(x)〉 = 〈σ(x) : A(x) : E〉. (13)

Eqs. (12), (13) are equivalent in a heterogeneous material only in sufficiently large volume

elements. If not so, the effective properties may lie far apart with a strong dependence on the

applied boundary conditions [30]. Let us define local constitutive equations, relating the average

microscopic strain with the microscopic stress

σ(x) = c(x) : ε(x), (14)

ε(x) = s(x) : σ(x), (15)

where c(x) and s(x) are the local stiffness and compliance tensors, respectively.

Inserting Eq. (9) into Eqs. (5), (14) and Eq. (10) into Eqs. (7), (15) leads to the effective

stiffness and compliance tensors. Since a heterogeneous sample is often formed from r phases

with fr volume fractions, it is possible to replace an integral with a summation

Σ = 〈σ〉 =
1

V

∫
V

cr : Ar : E dV =
∑
r

frcr : Ar : E = Ceff : E, (16)

E = 〈ε〉 =
1

V

∫
V

sr : Br : Σ dV =
∑
r

frsr : Br : Σ = Seff : Σ. (17)

Following Eshelby’s idea [15], an estimate for the strain concentration tensor Aest
r is ob-

tained from the solution of a matrix-inclusion problem. If an inclusion has a spherical or ellip-

soidal shape and is embedded in a reference medium with the stiffness tensor C0, the strain field

εr in the inclusion is uniform for a far imposed homogeneous strain. Such an approach leads

to an estimate of elastic properties. The most common choice for the localization tensor is the

Eshelbian type ellipsoidal inclusion placed in a reference medium [63]

Aest
r =

[
I + SEshr :

(
C−1

0 : cr − I
)]−1

:

〈[
I + SEshr :

(
C−1

0 : cr − I
)]−1

〉−1

. (18)

Continuum homogenization methods lead to several bounds; Voight, Reuss, Hashin-Shtrik-

man and Walpole bounds, or estimates such as Mori-Tanaka method, and self-consistent scheme.

Intrinsic elastic properties of phases can be found experimentally by nanoindentation [41, 50].
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An example applicable to concrete considers the aggregate volume fraction of 0.75 embedded

in a hydrating cement paste. The aggregates have constant elastic properties Ei = 60 GPa

with νi = 0.3 and the paste νm = 0.3 with a varying Young’s modulus from 0 to 40 GPa.

Fig. 8 summarizes the performance of seven homogenization methods. It becomes evident that

a lower contrast between the phases implies a lower difference in effective properties by dif-

ferent homogenization methods. The continuum methods formed the basis of multiscale model

for alkali-activated materials [54].
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Figure 8: Effective Young’s modulus of concrete made from aggregates embedded in a

hydrating cement paste.

5.2 Numerical homogenization methods

Generally speaking, numerical methods provide greater flexibility in local constitutive laws,

types of boundary conditions, coupled phenomena etc. at the expense of computational time

and possible unit cell (UC) discretization. We explore two methods for solving Eqs. (5), (7)

with periodic boundary conditions. A local strain tensor is decomposed into the average, or

macroscopic part E, and the fluctuating part ε∗(x)

ε(x) = E + ε∗(x), (19)

The fluctuating strain is first searched via finite element analysis (FEA), leading to

Kr = −
∑

Elements

∫
Ve

BT
eDeE dVe, (20)

where K is the reduced global stiffness matrix, r is the vector of nodal displacements, Be is

the strain interpolation matrix of the finite element, De represents a material stiffness matrix
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and the vector E contains prescribed components of the imposed macroscopic strain tensor E.

The vector E has the same meaning as the eigenstrain (stress-free strain).

The next successive homogenization method is based on the discrete fast Fourier transfor-

mation (DFT) [36]. Arbitrary stress field in a composite may be decomposed into the contribu-

tion of reference homogeneous material and to the polarization stress:

σ(x) = L(x)ε(x) = L0ε(x) + τ (x), (21)

which may be rewritten as iterative procedure:

εk+1(x) = E −
∫
V

Γ0(x− x′)(L(x′)− L0)εk(x′)dx′. (22)

where Γ is Green function. The convolution term of Eq. (22) may be efficiently treated by fast

Fourier transformation (FFT). Tab. 1 gives the notion of consumed time and memory during

homogenization of later stages of cement paste [50].

Size [µm ] DOF’s Memory [MB] Time [s]

FEM FFT FEM FFT

10× 10× 10 2 997 5.7 3.1 1.6 2.6

25× 25× 25 46 872 71.2 6.9 24.3 6.3

50× 50× 50 374 997 503 35.5 218 62

75× 75× 75 1 265 622 1713 109 787 93

100× 100× 100 - - 256 - 183

Table 1: Approximate computational requirements on CPU 3.2 GHz, FEM - periodic, FFT,

uniform mesh.

5.3 Paste of Kamali et al., w/c = 0.5

The paste was hydrated under saturated curing conditions at ≈ 20◦C [29]. Fig. 9 shows the

evolution of the Young modulus as predicted from the two-level continuum homogenization;

C-S-HLD and C-S-HHD are first homogenized using the Mori-Tanaka method and then with the

self-consistent scheme at the level of cement paste, Fig. 9. Also, FEM and FFT methods are

explored on different sizes of microstructures.

5.4 Analytical approximation of Young’s modulus

200 different paste microstructures 50× 50× 50 µm were generated, hydrated by CEMHYD3D

model and homogenized by FFT-based method. Analytical approximation in the range of 0.2 ≤
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Figure 9: Young’s modulus from the two-scale continuum homogenization and numerical

homogenization.

wcr ≤ 0.6 yields

Young’s modulus [GPa] = a(DoH− DoHp)
b > 0, (23)

DoHp = 0.1322 wcr − 0.0211, (24)

a =
1

0.1256 wcr 1.346
, (25)

b = 2.933 wcr − 0.145, b ≤ 1. (26)

Fig. 10 displays the evolution of Young’s modulus from FFT-based homogenizations and

approximations from Equations (23)-(26).

6 Identification of non-aging basic C-S-H creep

This section shows downscaling approach for identification of basic C-S-H creep from the scale

of cement paste [52]. For the case of no moisture or temperature change, the flow term in B3

creep model can be simplified to a logarithmic law, which is adopted here. Excluding drying

creep, the B3 compliance function for uniaxial stress has the form

J(t, t′) = q1︸︷︷︸
elastic

+ Cv(t, t
′)︸ ︷︷ ︸

aging viscoelastic

+ q4 ln

(
t

t′

)
︸ ︷︷ ︸

flow term

, (27)

Cv(t, t
′) =

∫ t

t′
v−1(t)Ċg(τ − t′) dτ =

∫ t

t′
v−1(t)

n(τ − t′)n−1

λn0 + (τ − t′)n
dτ , (28)

v−1(t) =

[
q2

(
λ0

t

)m
+ q3

]
. (29)



6 IDENTIFICATION OF NON-AGING BASIC C-S-H CREEP 18

 0

 10

 20

 30

 40

 50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Y
o

u
n

g
’s

 m
o

d
u

lu
s
 [

G
P

a
]

Degree of hydration [-]

W/c=0.2

Kamali, w
/c=0.25

W/c=0.30

Boumiz, w/c=0.35
Boumiz, w/c=0.40

Kamali, w/c=0.50

Maximum DoH

Fit

Simulation

Figure 10: Young’s moduli from the FFT homogenization, 75 × 75 × 75 µm, and the fit

according to Eq. (23).

Several parameters were found to be constant for concrete, independent of its type and curing

conditions: λ0 ≈ 1 day, m = 0.5 and n = 0.1 [6].

In an extension of Eq. (27) to stress varying in time, the hypothesis of linearity with respect

to stress agrees well with test data under the condition that there is no drying and that the

stresses are less than approximately 50 % of the strength limit of concrete, possibly up to 80 %

for cement paste [21]. The total strain may thus be calculated according to the principle of

superposition, integrating varying strain histories produced by infinitesimal stress increments
dσ(t′)

dt′
[3, 4, 28]

ε(t) =

∫ t

0

J(t, t′)
dσ(t′)

dt′
dt′ + ε0, (30)

where ε0 is the initial strain, which includes shrinkage, thermal strain and cracking strain. For a

numerical solution, it is convenient to convert Eq. (30) to a rate-type formulation based on the

Kelvin or Maxwell chain. For the case of the aging Kelvin chain, see Fig. 11, [3, 28]

ε̇µ(t) + τµε̈µ(t) =
σ̇(t)

Eµ(t)
, (31)

where τµ are properly chosen retardation times of the µ-th Kelvin unit (µ = 1, 2 . . . N), Eµ(t)

are the corresponding moduli, which in general are age-dependent, and εµ(t) are the strains in

individual Kelvin units.



6 IDENTIFICATION OF NON-AGING BASIC C-S-H CREEP 19

ηmin

minE
1/q

1

ηmin+1

min+1E

η0

0E

η1

1E

ηmax-1

max-1E

ηmax

maxE

σ
σ

Elastic
strain

Viscoelastic strain with aging, based on the continuous retardation spectrum, Kelvin chain Flow
strain

Degenerated into one elastic spring Creeping Kelvin units

τmin τmin+1 τ0 τ1 τmax-1 τmax

Typical retardation times 

τ     =10     day, τ  =10    day min 0
-20 -8

Typical retardation times 

τ  =10    day, τ      =10   days 1
-7 4

max

ε1 ε εmaxmax-1ε 0

σσ
η=t/q

4

Figure 11: Approximation of aging creep function by non-aging linear spring, aging Kelvin

chain and a flow element. The representation corresponds to Eq. (27).

6.1 Visco-elastic homogenization via FFT-based method

The macroscopic viscoelastic response of UC is obtained through the solution of the local prob-

lem, which consists of equilibrium and constitutive equations complemented by boundary con-

ditions. According to the exponential algorithm [2], two equations must be satisfied in each

time step

div ∆σ(x) = 0, (32)

∆σ(x) = L′′(x) : (∆ε(x)−∆ε′′(x)) = L′′(x) : ∆ε(x)−∆λ(x), (33)

where the inelastic strain increment ∆ε′′(x) is known from a previous time step and can be

replaced, after the multiplication with the incremental stiffness tensor, by the eigenstress tensor

∆λ(x). The periodic boundary conditions are expressed as a decomposition of strain incre-

ments into the average ∆E and the fluctuating part ∆ε∗(x)

∆ε(x) = ∆E + ∆ε∗(x). (34)

which yields

∆ε(x) = ∆E − Γ0(x) ∗∆τ (x) =

= ∆E + Γ0(x) ∗ (L0 : ∆ε(x))︸ ︷︷ ︸
∆ε(x)

−Γ0(x) ∗ (L′′(x) : ∆ε(x)−∆λ(x))︸ ︷︷ ︸
∆σ(x) from Eq. (33)

. (35)

This equation is the basis of a recursive iterative procedure (k = 0, 1 . . . ) for viscoelasticity

∆εk+1(x) = ∆εk(x)− Γ0(x) ∗∆σk(x). (36)

The local constitutive law in Eq. (33) has to be called in each iteration to access ∆σk(x).
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6.2 Inverse creep analysis for two-year old cement paste

The irreversible creep of C-S-H will be obtained from the unloading stage of hardened cement

paste two years old, with a wcr = 0.5 [7]. Pairs of T-shaped bars were cut from the stored

cylinders, Fig. 12, and subjected to an axially compressive load of 10.35 MPa in a humidity-

controlled chamber, which was maintained at 96 % RH instead of 100 % due to technical

difficulties. After 72 hours, the specimens were unloaded. Drying shrinkage was measured on

a companion load-free specimen.

Figure 12: T-shaped bar used in creep and shrinkage tests of cement pastes [58].

Two UCs 10× 10× 10 and 50× 50× 50 µm of cement paste were reconstructed using the

CEMHYD3D model. The larger UC truncates cement particles above 19 µm in diameter and

the smaller UC those above 5 µm. Fig. 13 shows both at the time of two years. The chemical

composition of clinker was normalized according to the aforementioned data, and the cement

particle size distribution was taken to be the same as for reference cement 16132 with the

Blaine fineness of 357 m2/kg and autocorrelation files from reference cement 115 of the NIST

database, see [10]. Hydration with the CEMHYD3D code reached the degree of hydration

of 0.988, for which the important volume fractions were: calcium hydroxide 0.141, C-S-HLD

0.303, C-S-HHD 0.183, unhydrated clinker mineral 0.004, water-filled capillary porosity 0.199,

and empty capillary porosity 0.003 caused by the inaccessibility of certain parts of UC to pore

water even at saturated curing conditions. The C-S-HHD/(C-S-HHD + C-S-HLD) ratio was

0.376, which agrees well with the colloid model [60].

The T-shaped specimens were simultaneously in the process of drying to 96 % RH and

loading. The measured shrinkage strain [8] was fitted as [5]

εsh(t) = 0.165 tanh

√
(t− t′)− 0.1

τsh
, (t− t′) ≥ 0.1 day, (37)
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Figure 13: UC of cement paste 50 × 50 × 50 µm (left) and 10 × 10 × 10 µm (right).

White = C-S-H (viscoelastic), gray = other solids (elastic), black = capillary porosity.

where 0.1 day is the time at which drying began to have an effect on the specimen, and τsh = 0.8

day is the shrinkage half-time, Fig. 14. The uncertainties in Eq. (37) have only a small effect

on the irrecoverable strain after unloading. It is further assumed that shrinkage and creep strain

are additive for these nearly saturated conditions.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

C
-S

-H
 c

om
pl

ia
nc

e 
[(

G
P

a)
-1

]

Time (t-t’) [days]

Required match with
nanoindentation modulus
at this time

Dwelling stage in
nanoindentation

q1        q3      q4 [(GPa)-1]
0.0381  0.04  0.002
0.0381  0.04  0.000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

0 100

P
as

te
 to

ta
l s

tr
ai

n 
[m

m
/m

]

Time (t-t’) [days]

Time from unloading (t-t’u) [days]
(t

-t
’)=

3 
da

ys
10

drying
Experiment
50x50x50

Figure 14: Compliance assigned to C-S-H (left), also for comparison without the flow term

(q4 = 0). Measured and simulated total strain of two-year old cement paste (right). The

arrows show corresponding times from nanoindentation experiments.

The parameters q1, q3, q4, λ0, n for the C-S-H creeping phase in the B3 model remain

unknown. The parameter q4 quantifies the irrecoverable flow strain which can be determined

from unloading, independently of the other parameters of mature paste. The parameters q1 and

q3 are in fact related through nanoindentation data. The results are summarized in Tab. 2.
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Experiment Two-year old paste

q1 [(GPa)−1] 0.0381

q2 [(GPa)−1] 0.0

q3 [(GPa)−1] 0.040

q4 [(GPa)−1] 0.002

m [-] no effect

n [-] 0.25

λ0 [day] 1

1/J(t+ 2.6 s, t) C-S-H [GPa]b 24.31

Poisson’s ratio of C-S-H [-] 0.24

t′ [day]c 1

Kelvin units 11

τ1 [day] 10−7

τmax [day] 103

Max. attained iterations 300
b approximately corresponding to Young’s modulus from nanoindentation data
c due to non-aging creep takes effect only in the microprestress (flow) term

Table 2: Assigned C-S-H parameters and homogenization details in the analysis of non-

aging two-year and 30-year old cement pastes.

Fig. 14 shows viscoelastic behavior assigned to C-S-H, both with and without the flow

term (q4 = 0). An arrow points to the time when the elastic indentation modulus is typically

evaluated. The asymptotic compliance q1 = 0.0381 GPa−1 is about 93 % of the compliance

from nanoindentation data J(t+ 3 · 10−5 day, t) = 0.0411 GPa−1. Also, the time range for the

creep nanoindentation test is displayed for a typical duration of 4.3 minutes. The elastic strain

immediately after loading was not directly reported [7] and was assumed to be 800 · 10−6 for a

static stress of 10.35 MPa at 0.01 day, see Fig. 14.

6.3 Long-term creep upscaled to the concrete level

Upscaling of creep through the correspondence principle is possible as long as the compli-

ance function takes the form J(t − t′). The creep function with aging generally has the form

J(t, t′), see Eq. (27) for the B3 model. To circumvent this difficulty, Grasley and Lange [20]

used, among others, the time-shift approach where the creep function is expressed in the form

J(ξ(t)−ξ(t′)). The function ξ(t) maps real time to pseudotime. Pichler and Lackner [42] made

the compliance function J(t − t′) dependent also on DoH so the homogenized creep depends
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also on t′.

Let us try to approximate the basic creep of concrete with the non-aging version of the B3

model. Brooks [13] performed unique basic creep tests under a constant uniaxial loading for the

duration of 30 years. He found that the reversible part, evaluated at six months after unloading,

is only 5 – 14 %. The irreversible viscoelastic part of the B3 model originate either from the

aging or from the flow term, see Eq. (27). The flow term can be approximated in the form

J(t− t′) under the condition that stress in the C-S-H phase decays rapidly with time

q4 ln

(
t

t′

)
= q4 ln

(
1 +

t− t′

t′

)
≈ q4 ln

(
1 +

t− t′

1

)
. (38)

Fig. 15 shows such a creep compliance at four different scales. The considered concrete with

a wcr = 0.5 is made from a normal weight aggregate quarried in North Notts. The parameters

for B3 models were taken from Tab. 2; q1 = 0.0381, q2 = 0, q3 = 0.040 (GPa)−1, n = 0.25,

m = 0.5 and q4 was fitted to 0.017 (GPa)−1. Young’s modulus of coarse and fine aggregates

was assumed as 60 GPa, Poisson’s ratio as 0.2. The air present in concrete was considered

to act simultaneously at the level of cement paste. The Mori-Tanaka method was used for the

transition among all three scales and no ITZ was considered.

7 Multiscale simulation of heat transport

The temperature rise in hydrating concrete presents a formidable problem which may lead to a

significant acceleration of hydration kinetics, early age cracking, or decreased durability. Low

thermal conductivity of concrete, the exothermic hydration process and surrounding ambient

conditions contribute to temperature gradients, often accompanied with strains. Tensile stresses

then appear in a cooling stage due to minor restraints and excessive stresses may lead to the

formation of microcracks manifested with decreased durability [39, 47]. Several guidelines

require that temperature anywhere in concrete should not exceed 70◦C to avoid a possible risk

of delayed ettringite formation accompanied by expansion and disintegration [1]. Other rules

specify a maximum cooling rate of 3◦C per hour during the first 24 hours and special caution

when the concrete temperature drops below 4◦C [37].

7.1 Mathematical formulation of heat transport

The transient three dimensional heat conduction problem in incompressible media can be de-

rived from energy balance on a differential element [33, 62]

−∇Tq(x) +Q(x, t) = ρ(x)cV (x)
∂T (x, t)

∂t
, (39)



7 MULTISCALE SIMULATION OF HEAT TRANSPORT 24

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

10-4 10-3 10-2 10-1 100 101 102 103 104 105

C
-S

-H
 c

om
pl

ia
nc

e 
[(

G
P

a)
-1

]

C-S-H

C-S-H without flow term

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

10-4 10-3 10-2 10-1 100 101 102 103 104 105

C
om

pl
ia

nc
e 

[(
G

P
a)

-1
]

Time (t-t’) [days]

Paste

Mortar

Concrete
30 years

Experiment

Figure 15: Creep at four scales as predicted by continuum homogenization methods, wcr =

0.5.

where q(x) [W/m2] is the heat flux originating from heat conduction, Q(x, t) [W/m3] repre-

sents a known heat source from the scale of cement paste, ρ(x) [kg/m3] stands for concrete

density, cV (x) [Jkg−1K−1] is a specific heat capacity and T (x, t) [K] represents the unknown

temperature field. The derivation further considers an isotropic material. Q(x, t) is obtained

from hydration models, see Section 4.

The heat flux over the body, q(x), corresponds to heat conduction, which is expressed by

Fourier’s law

q(x) = −λ(x)∇T (x), (40)

where λ(x) [Wm−1K−1] is the thermal conductivity of an isotropic material.

The solution of Eq. (39) requires prescribing initial conditions T (x, 0) at t = 0 over the

body

T (x, 0) = T (x, 0), x ∈ Ω. (41)

The differential Eq. (39) can be complemented with boundary conditions, which have a
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variety of forms. Dirichlet’s boundary condition prescribes temperature on the boundary

T (x, t) = T (x, t), x ∈ ΓT . (42)

Neumann’s boundary condition prescribes the flux q(x, t) on the boundary

n(x)Tq(x, t) = q(x, t), x ∈ Γq, (43)

where n(x) is a unit normal vector pointing outwards from the surface.

Cauchy’s (mixed) boundary condition can be represented by heat convection. Let us con-

sider a concrete surface exposed to air. The air flows around the concrete body and forms a thin

region called the boundary layer. Convection occurs inside the layer and sweeps the heat from

the concrete surface. The heat flux is described by Newton’s law on the body surface

n(x)Tq(x) = h(x) (T (x)− T∞) , x ∈ Γc, (44)

where h(x) [Wm−2K−1] is a heat transfer coefficient and T∞ is the ambient temperature far

enough from the boundary layer.

7.2 Space and time discretization

The analytical solution of Eq. (39) is not amenable for more complicated cases. FEM presents

a robust numerical procedure, which starts from the formulation of a weak problem. This yields

a set of linear set of algebraic equations in the form

C ṙ +Kr = p, (45)

where ṙ are temperature nodal derivatives with respect to time. The system matrices and the

heat load vector are provided by

K =

∫
Ω

B(x)Tλ(x)B(x)dΩ, (46)

C =

∫
Ω

N (x)Tρ(x)cV (x)N (x)dΩ, (47)

p = −
∫

Γc,T,q

N (x)Tn(x)Tq(x, t)dΓ +

∫
Ω

N (x)TQ(x, t)dΩ, (48)

where K is the conductivity matrix, C is the capacity matrix, and the heat load vector, p,

captures both the boundary conditions and the heat source. All terms depending on temperature

will appear on the left hand side of Eq. (45).
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Now assume that Eq. (45) is evaluated at a time step tn+1 using a parameter α ∈ 〈0, 1〉 so

that t = tn + α∆tn. Inserting such approximation into Eq. (45) yields

(C + α∆tK) ṙn+1 = pn+1 −K r̃n+1, (49)

which will provide an unknown temperature derivative ṙn+1. A back-substitution gives the

unknown vector rn+1

rn+1 = r̃n+1 + α∆tnṙn+1. (50)

7.3 Validation

Multiscale heat transport model with validations was published previously [27, 49, 50, 51, 56].

This section provides a brief overview.

7.3.1 Temperature evolution on a prestressed bridge

A new scaffold bridge “Nové spojení” was erected during 2006-2007 in Prague, see the photo

in Fig. 16. The prestressed bridge, totaling 443 m in length, acts as a continuous beam with

12 spans. The temperature field was gathered at many gauges up to several days after the

concrete casting. Fig. 17 shows a characteristic cross-section of the bridge and the sequence of

construction steps, which followed an enumerated, bottom-top approach:

1. Placing precast segments made of face concrete,

2. Casting the bottom slab with a thickness of 363–850 mm,

3. Casting two beams with a height of approximately 2.0 m and a minimum width of 1.3 m,

joined by a massive cross-beam above the piers, see Fig. 16,

4. Placing the precast segments below the top slab, creating a sacrificial formwork,

5. Casting the top slab with a variable thickness.

The simulation deals with hydration of the bridge beams. This had occurred after 35 days

from the slab casting, from 6:39 AM, Jul 12, 2006. Fig. 18 shows the beam dimensions

and a generated mesh with 239 nodes, 39 triangular and 177 quadrilateral elements, totaling

239 DoFs. The simulation utilizes horizontal bridge symmetry. Gauge T5 in Fig. 18 was con-

sidered to be the most important from the underlying slab. The mesh was adjusted in such a way

that gauges T5 – T10 were forced to be at the nodal positions. Again, the beam was separated

into five regions and five hydration models were assigned to them, see Fig. 18.

According to the measured data, the simulation considered the initial ambient temperature of

26◦C and 25◦C for concrete. The time functions of ambient air temperature were approximated
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Figure 16: Construction of the scaffold bridge in Prague, photo by D. Prause.

Figure 17: A characteristic cross-section of the bridge and a sequence of construction steps.

Figure 18: Topology and boundary conditions of the beam. Different colors represent

different CEMHYD3D material models, the right shoulder and the bottom slab are con-

sidered mature.

at the bottom as

T (t) = 26 + 10 sin

{
2πt− 2.7π

24

}
, (51)
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and at the top and the vertical surfaces as

T (t) = 26 +

[
10 + 5 ·H

(
sin

{
2πt− 2.7π

24

})]
· sin

{
2πt− 2.7π

24

}
. (52)
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Figure 19: Temperature of gauges T7, T10, T5 and approximated ambient temperature.

Pair gauges T5–T6 and T9–T10 measured very similar temperature values. For this rea-

son, only gauges T7, T10, and T5 were validated, see Fig. 19. The maximum temperature in

gauge T7 was not measured due to technical difficulties but the simulation predicted 86.8◦C at

1.367 day, for the cement amount of 400 kg/m3. The approximation of ambient air temperature

is in reasonable agreement with the sinusoidal function described by Eq. (51).

Fig. 20 displays details for the maximum temperature of 86.8◦C in gauge T7, achieved at

1.367 day. Note a low temperature gradient in the middle part of the beam, which approaches

adiabatic conditions. The variation in DoH and Young’s modulus of concrete is not significant

during this hydrating stage. The whole beam simulation took 68 minutes on the 3.2 GHz PC and

occupied 19 MB of RAM excluding homogenization routines. Calculations covered 10 days of
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Figure 20: Temperature field, DoH and Young’s modulus of concrete at 1.367 day

when maximum temperature 86.8◦C is reached in gauge T7.

the hydration period with the time integration step of 10 minutes using the Crank-Nicolson

scheme.
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7.3.2 Optimal position of cooling pipes

This example demonstrates how multiscale modeling can be applied for the optimization of the

cooling pipes positions. The pipes were embedded in massive concrete and circulating water

efficiently dissipates the hydration heat.

The field data came from the construction of the Oparno bridge arch in the Czech Republic,

which spans 135 m, see Fig. 21. Fig. 22 shows a symmetrical left part of an arch cross-section.

The cross-section in the form of a π-shape has the outer dimensions of 7.0 × 2.4 m. The inner

part corresponds well to adiabatic curing conditions. The arch is cast incrementally in segments

during the whole year.

Figure 21: The Oparno bridge, Czech Republic, 2010.

The simulation will explore the worst scenario during the summer casting. The initial con-

crete temperature is set at 23◦C and the surrounding ambient temperature at 30◦C. The contrac-

tor prescribed the mix composition hence all optimization has to deal with boundary conditions.

In the absence of cooling, the maximum concrete temperature attains 95◦C at 52 hours after

casting, which was unacceptable, see Fig. 22-a.

The original cooling, captured in Fig. 22-b, proved to be effective in the decrease of the max-

imum temperature to 69.5◦C, but the distribution of temperature is inappropriate. The cooling

would induce high tensile stresses at the surface regions, which may lead to cracking with de-

creased durability. By a judgment, the mutual distance of the cooling pipes was increased so that

the temperature was distributed more uniformly, Fig. 22-c. The maximum temperature reached

75◦C. When cooling water is switched off after 52 hours of hydration, a hot core forms in the

concrete, Fig. 22-d. The field resembles a feasible temperature distribution from Fig. 22-a, but

now with lower temperatures.
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a) No cooling, at 52 hours b) Original design of cooling, at 32 hours

c) Optimized cooling, at 32 hours d) Optimized cooling, at 90 hours

Figure 22: Temperature distribution during concrete casting in summer. Subfigures show

important stages during the optimization of cooling pipes with the time corresponding to

the highest achieved temperature.

At the end, optimized design of cooling pipes according to Fig. 22-c was used. Temperature

gauges recorded values in the arch center and surrounding ambient air. This provided necessary

information for an update of model parameters such as initial concrete temperature and hydra-

tion kinetics. Fig. 23 shows differences between the blind prediction and updated simulation.

Considering number of parameters entering the computation, the differences are acceptable and

demonstrate good potential of multiscale methods.

7.3.3 Further validations for concrete temperatures

The multiscale method for temperature prediction is the basis of software ConTemp – A virtual

thermo-mechanical simulator for hydrating reinforced concrete blocks [51]. We have been de-

veloping this software since 2012 and it is now used in approximately 20 countries in the world
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Figure 23: Temperature evolution in the center of the Oparno bridge arch. Results from

blind prediction and updated simulation.

by LafargeHolcim company.

Figure 24: Pile cap foundations in Access Tower II 7.15×7.15×2.5 m, Sri Lanka, 2014-

2016.

Figure 25: Gas turbine foundation in Ecuador 20×6×2.8 m, 2014. Only block 3×3×2.8 m

is simulated.
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a) Overview
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Figure 26: Simulation of a restrained wall in Oslo. Gauge 15 is located 1.2 from the bottom

in the middle of the wall.
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8 Conclusions

Hierarchical modeling presents a powerful framework for assessing nonlocalized phenomena,

such as elasticity, viscoelasticity and hydration heat of cement-based materials. These topics

were widely discussed, demonstrated and validated employing microstructural models of hy-

drating Portland-cement paste. ConTemp software emerged from those models, adopted by the

largest cement manufacturer LafargeHolcim.

Extension to localized phenomena, such as evolution of compressive strength of blended ce-

ment pastes, has been proposed and successfully validated [25, 61]. Base on those experiments,

cantilever beams 20 µm long were tested in fruitful collaboration with the Czech Academy of

Sciences yielding new information on tensile properties on microscale [40]. Further experi-

mental and numerical campaigns execute in these days to explore the role of interfaces, internal

defects and binding properties of N-A-S-H gels. Multiscale insight provides a nice framework

for describing these phenomena.
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man, J. Němeček, M. Lepš, J. Kruis, P. Kabele, B. Patzák, M. Jirásek, L. Kopecký, M. Vokáč,
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