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Concept lattices and attribute implications

from data with fuzzy attributes

komise pro obhajoby doktorských disertaćı v oboru
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1 Introduction

1.1 Doctoral dissertation and this thesis

The submitted doctoral dissertation is devoted to foundations of formal concept
analysis of data with fuzzy attributes, particularly to concept lattices, attribute
implications, and related structures and topics. The dissertation consists of a
collection of papers [A1]–[A21], accompanied by an annotation.

This thesis provides a summary of the dissertation and is organized as fol-
lows. Section 1 describes the content of the dissertation. Section 2 contains
results on concept lattices and related structures. Section 3 deals with attribute
implications. Section 4 overviews some further results and directions for future
research. References are split into three parts. Part A (references [A1]–[A21])
contains publications of which the dissertation consists. Part B (references [B1]–
[B16]) contains further publications of the author which are related to the topic
of the thesis. Part C (references [C1]–[C49]) contains publications by other
authors which are related to the dissertation.

1.2 Content of dissertation

Broadly speaking, the dissertation brings up results on a particular way of devel-
opment of formal concept analysis (FCA) from the point of view of fuzzy logic.
The aim of this section is to briefly present the basic ideas of FCA and outline
the approach to FCA from the point of view of fuzzy logic which is adopted in
the submitted dissertation.

Formal concept analysis Tables, i.e. two-dimensional arrays, represent per-
haps the most popular way to describe data. Table rows usually correspond to
objects of our interest, table columns correspond to some of their attributes,
and table entries contain values of attributes on the respective objects. As an
example, consider patients as objects and “name”, “weight”, “male”, “female”,
etc. as attributes. Table rows and columns are usually labeled by objects’ and
attributes’ names. A particular case arises when all the attributes are logical at-
tributes (presence/absence attributes) like “male”, “headache”, “left-handed”,
etc. A patient either is a male or not and, in general, either has a logical attribute
or not. In this case, a table entry corresponding to object x and attribute y con-
tains × or blank depending on whether object x has or does not have attribute
y.

Many methods of various kinds have been and are being developed for the
purpose to analyze tabular data, starting with classical statistical methods, and
going through clustering and classification up to the most recent methods of data
mining. The submitted dissertation is concerned with theoretical foundations
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y1 y2 y3 · · ·
x1 × × ×
x2 × × ...
x3 × ×
... · · · . . .

y1 y2 y3 · · ·
x1 1 1 0.7

x2 0.8 0.6 0.1
...

x3 0 0.9 0.9
... · · · . . .

Figure 1: Tables with logical attributes: crisp attributes (left), fuzzy attributes
(right).

of one of these methods, namely, of FCA. Although some previous attempts
exist, it is generally agreed and FCA started by Wille’s seminal paper [C47].
Since then, FCA is being developed theoretically, algorithmically, and method-
ologically. Applications of FCA are basically in data analysis and knowledge
discovery, both as a direct method delivering results to the user and a prepro-
cessing method being used with other methods. Two monographs on FCA are
[C17] (mainly mathematical foundations) and [C13] (mainly algorithms and ap-
plications). There are three international conferences devoted to FCA, namely
ICFCA (Int. Conf. on Formal Concept Analysis), CLA (Concept Lattices and
Their Applications), and ICCS (Int. Conf. on Conceptual Structures). In addi-
tion, further papers on FCA can be found in journals and proceedings of other
conferences.

A table with logical attributes can be represented by a triplet 〈X,Y, I〉 where
I is a binary relation between X and Y . Elements of X are called objects and
correspond to table rows, elements of Y are called attributes and correspond to
table columns, and for x ∈ X and y ∈ Y , 〈x, y〉 ∈ I indicates that object x
has attribute y while 〈x, y〉 /∈ I indicates that x does not have y. For instance,
Fig. 1.2 (left) depicts a table with logical attributes. The corresponding triplet
〈X,Y, I〉 is given by X = {x1, x2, x3, x4}, Y = {y1, y2, y3}, and we have 〈x1, y1〉 ∈
I, 〈x2, y3〉 /∈ I, etc. Since representing tables with logical attributes by triplets
is common in FCA, we say just “table 〈X, Y, I〉” instead of “triplet 〈X, Y, I〉
representing a given table”. FCA aims at obtaining two outputs out of a given
table. The first one, called a concept lattice, is a partially ordered collection of
particular clusters of objects and attributes. The second one consists of formulas,
called attribute implications, describing particular attribute dependencies which
are true in the table. The clusters, called formal concepts, are pairs 〈A, B〉 where
A ⊆ X is a set of objects and B ⊆ Y is a set of attributes such that A is a set
of all objects which have all attributes from B, and B is the set of all attributes
which are common to all objects from A. For instance, 〈{x1, x2}, {y1, y2}〉 and
〈{x1, x2, x3}, {y2}〉 are examples of formal concepts of the (visible part of) left
table in Fig. 1.2. An attribute implication is an expression A ⇒ B with A and B
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being sets of attributes. A ⇒ B is true in table 〈X, Y, I〉 if each object having all
attributes from A has all attributes from B as well. For instance, {y3} ⇒ {y2}
is true in the (visible part of) left table in Fig. 1.2, while {y1, y2} ⇒ {y3} is not
(x2 serves as a counterexample).

Formal concept analysis and fuzzy logic Contrary to classical (two-valued)
logic, fuzzy logic uses intermediate truth degrees in addition to 0 (false) and 1
(true). Fuzzy logic thus allows to assign truth degrees like 0.8 to propositions like
“Customer C is satisfied withe service s”. In this example, assigning 0.8 to the
above proposition means that customer C was quite satisfied but not completely.
This way, fuzzy logic attempts to deal with fuzzy attributes (graded attributes)
like “being tall”, “being satisfied (with a given service)”, etc. An example of a
table with fuzzy attributes is presented in the right part of Fig. 1.2. A table en-
try corresponding to object x and attribute y contains a truth degree of “object
x has attribute y”. For instance, object x1 has attribute y1 to degree 1, x2 has
attribute y1 to degree 0.8, x2 has attribute y3 to degree 0.1, etc. If objects are
patients and y1 is “intensive headache” than the table says that patient x2 has a
rather severe headache. Needless to say, dealing with fuzzy attributes by means
of classical logic, i.e. using only 0 and 1, and “forcing” a user to decide whether
or not a given customer was satisfied, is not appropriate. Using intermediate
truth degrees in addition to 0 and 1 instead of 0 and 1 only has became known
under the term fuzzy approach (graded approach).

With respect to the above outline, FCA in its basic setting deals with two-
valued logical attributes (called also crisp attributes). The following question
therefore arises:

Is it feasible to extend the methods of FCA so as to have FCA
applicable to tables with fuzzy attributes?

The submitted thesis attempts to provide a positive answer to this question.

Main contributions of the dissertation The following are the main con-
tributions and features of the dissertation:

(1) We present a sound generalization of the mathematical foundations of
FCA. This concerns mainly concept lattices and attribute implications,
i.e. two main outputs of FCA, but also mathematical structures directly
related to FCA like closure operators, closure systems, Galois connections,
and complete lattices. We use complete residuated lattices as a general
structure of truth degrees. The ordinary (i.e., “non-fuzzy”) results on
FCA turn out to be a particular case of our results when the complete
residuated lattice is a two-element Boolean algebra.
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(2) Although the computational aspects (design of efficient algorithms) are of
secondary interest in the dissertation, we present algorithms with the same
order of complexity as those known from the ordinary FCA (computation
of fixed points of the fuzzy closure operators involved, computation of
systems of pseudo-intents, computation of non-redundant bases of fuzzy
attribute implications).

(3) Our approach is based on following closely fuzzy logic in narrow sense,
see e.g. [C26]. Briefly speaking, our definitions result from considering
appropriate formulas and evaluating these formulas according to the prin-
ciples of fuzzy logic. Furthermore, when developing fuzzy attribute logic,
i.e. a logical calculus for reasoning with rules A ⇒ B, we present both
ordinary-style as well as Pavelka-style logics.

(3) We present various results (representation results, reduction results) on
relationships between the new structures which result in our approach
like fuzzy concept lattices, fuzzy Galois connections, fuzzy attribute im-
plications, etc., and the ordinary structures, i.e. concept lattices, Galois
connections, attribute implications, etc.

(4) We demonstrate that in a fuzzy setting, new phenomena arise. These
phenomena are hidden in the ordinary setting but are interesting and im-
portant in a fuzzy setting. Two examples are presented in detail. First,
factorization of concept lattices by similarity which allows us to consider
simplified version of the original concept lattice, namely, its factor lattice.
Second, usage of hedges (truth functions of connective “very true”) to pa-
rameterize the underlying Galois connections. Hedges enable us to control
the size of the resulting concept lattice. In addition to that, by setting
hedges in an appropriate way, we obtain approaches proposed by other
authors as a particular case of our approach.

(5) Results on fuzzy attribute implications show an interesting connection to
an extension of Codd’s relational model of data, a framework which under-
lies relational databases. The extension consists in considering similarity
relations on domains in the relational model. The agenda around fuzzy at-
tribute logic translated into the extension of Codd’s model, plays the role
of the agenda of functional dependencies in Codd’s model. The extension
by similarities and, in particular, functional dependencies in this extension
have been studied by many authors. Our results offers a more elaborate
approach: our concept of functional dependence is more general still quite
natural, we deal with partial entailment of functional dependencies, etc.

(6) Some of our results, although developed in a fuzzy setting, are new even for
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the ordinary setting. The method of reducing the size of concept lattices
by closure operators is an example.

(7) FCA, in a sense, develops formally a theory of concepts proposed within
so-called Port-Royal logic [C3] which was very influential and is still popu-
lar. The dissertation shows that Port-Royal theory of concepts, proposed
originally informally in natural language and very probably bearing only
bivalent (i.e. crisp) concepts in mind, may naturally be interpreted as a
theory of fuzzy (graded) concepts.

(8) We outline some promising directions for future research. In addition to a
further development of FCA in a fuzzy setting itself, we present two new
promising directions and our preliminary results. First, relational factor
analysis (the term was coined by us and is thus to be considered tentative).
Second, the above mentioned extension of Codd’s relational model of data.

(9) The dissertation presents a sound and comprehensive study of an area on
the borderline of mathematics and computer science. As such, it can serve
as an example of a proper development of a non-trivial area from the point
of view of fuzzy approach.

1.3 Preliminaries

In what follows, we briefly outline basics of FCA and basics of fuzzy sets and
fuzzy logic including references where one can find details. We proceed in a dry
style, presenting just definitions, selected results, and short comments.

Formal concept analysis and related structures Let 〈X, Y, I〉 be a data
table with crisp attributes, i.e. X and Y are finite sets (of objects and attributes)
and I ⊆ X × Y is a binary relation between X and Y , see Section 1.2. 〈X, Y, I〉
is also called a formal context in FCA. Introduce operators ↑ : 2X → 2Y and
↓ : 2Y → 2X by putting for each A ⊆ X and B ⊆ Y

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}.

A formal concept in 〈X, Y, I〉 is a pair 〈A, B〉 of A ⊆ X and B ⊆ Y such
that A↑ = B and B↓ = A. Put B(X, Y, I) = {〈A, B〉 |A↑ = B, B↓ = A}, i.e.,
B(X, Y, I) is the set of all formal concepts in 〈X, Y, I〉. Introduce a partial order
≤ on B(X, Y, I) by 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). The set
B(X, Y, I) equipped by ≤ is called a concept lattice of 〈X, Y, I〉.

Note that A↑ is the set of all attributes shared by all objects from A; similarly
for B↓. Therefore, 〈A, B〉 is a formal concept iff A is the set of all objects sharing
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all attributes from B and, vice versa, B is the set of all attributes shared by
all objects from A. A and B are called an extent and an intent of 〈A, B〉;
an extent (intent) is thought of as a collection of objects (attributes) to which
the concept 〈A, B〉 applies. 〈A1, B1〉 ≤ 〈A2, B2〉 means that 〈A2, B2〉 is more
general than 〈A1, B1〉 since it applies to more objects (or, equivalently, applies
to fewer attributes); ≤ therefore models the subconcept-superconcept hierarchy.
Alternatively, formal concepts can be defined as maximal rectangles in table
〈X, Y, I〉 which are full of ×’s. The following assertion is called the Main theorem
of concept lattices.

Theorem 1 ([C47]) (1) B(X, Y, I) equipped with ≤ a complete lattice with in-
fima and suprema given by∧

j∈J〈Aj, Bj〉 = 〈
⋂

j∈J Aj, (
⋃

j∈J Bj)
↓↑〉,

∨
j∈J〈Aj, Bj〉 = 〈(

⋃
j∈J Aj)

↑↓,
⋂

j∈J Bj〉.

(2) Moreover, an arbitrary complete lattice V = 〈V,≤〉 is isomorphic to
B(X, Y, I) iff there are mappings γ : X → V , µ : Y → V such that

(i) γ(X) is
∨

-dense in V, µ(Y ) is
∧

-dense in V;

(ii) γ(x) ≤ µ(y) iff 〈x, y〉 ∈ I. 2

A subset K of a complete lattice V is called infimally (supremally) dense if
each element of V is a infimum (supremum) of some elements of K.

Let 〈U,≤〉 and 〈V,≤〉 be complete lattices. A closure operator in 〈U,≤〉
is a mapping C : U → U for which u ≤ C(u), u ≤ v implies C(u) ≤ C(v),
C(C(u)) = C(u), for each u, v ∈ U . A Galois connection between 〈U,≤〉 and
〈V,≤〉 is a pair of mappings ↑ and ↓ for which u1 ≤ u2 implies u↑2 ≤ u↑1, v1 ≤ v2

implies v↓2 ≤ v↓1, u ≤ u↑↓, v ≤ v↓↑, for each u, ui ∈ U and v, vi ∈ V .
For further details we refer to [C17] and also to [C13].

Fuzzy sets and fuzzy logic We use complete residuated lattices as our
structures of truth degrees. A complete residuated lattice is an algebra L =
〈L,∧,∨,⊗,→, 0, 1〉 such that 〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1
being the least and greatest element of L, respectively; 〈L,⊗, 1〉 is a commu-
tative monoid (i.e. ⊗ is commutative, associative, and a ⊗ 1 = 1 ⊗ a = a for
each a ∈ L); ⊗ and → satisfy a⊗ b ≤ c iff a ≤ b → c (adjointness property) for
each a, b, c ∈ L. Moreover, we use the following concept of a (truth-stressing)
hedge (cf. [C26],[C27]). A hedge on a complete residuated lattice L is a map-
ping ∗ : L → L satisfying 1∗ = 1, a∗ ≤ a, (a → b)∗ ≤ a∗ → b∗, a∗∗ = a∗,
for each a, b ∈ L. A biresiduum on L is a derived operation ↔ defined by
a ↔ b = (a → b) ∧ (b → a).

Elements a of L are called truth degrees. ⊗ and → are (truth functions of)
“fuzzy conjunction” and “fuzzy implication”; hedge ∗ is a (truth function of)
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logical connective “very true”; ↔ is a (truth function of) “fuzzy equivalence”.
A common choice of L is a structure with L = [0, 1] (real unit interval), ∧ and
∨ being minimum and maximum, ⊗ being a left-continuous t-norm with the
corresponding →. Three most important pairs of adjoint operations on the unit
interval are:  Lukasiewicz: a⊗ b = max(a + b− 1, 0), a → b = min(1− a + b, 1);
Gödel (minimum): a⊗ b = min(a, b), a → b = 1 if a ≤ b and a → b = b if a > b;
Goguen (product): a ⊗ b = a · b, a → b = 1 if a ≤ b and a → b = b/a if a > b.
Other examples are finite chains, e.g. L = {a0 = 0, a1, . . . , an = 1} ⊆ [0, 1]
(a0 < · · · < an) with ⊗ and → given by ak ⊗ al = amax(k+l−n,0) and ak → al =
amin(n−k+l,n) (finite  Lukasiewicz chain), or ⊗ and → being the restrictions of the
above Gödel operations on [0, 1] to L. A special case is a two-element Boolean
algebra which we will denote by 2.

An L-set (fuzzy set) A in a universe U is a mapping A : U → L, A(u) being
interpreted as “the degree to which u belongs to A”. If U = {u1, . . . , un} then
A can be denoted by A = {a1/u1, . . . ,

an/un} meaning that A(ui) equals ai; we
write {u, 0.5/v} instead of {1/u, 0.5/v, 0/w}, etc. LU (or LU) denotes the collection
of all L-sets in U ; basic operations with L-sets are defined componentwise. An
L-set A ∈ LU is called crisp if A(u) ∈ {0, 1} for each u ∈ U . Crisp L-sets
can be identified with ordinary sets. For a crisp A, we also write u ∈ A for
A(u) = 1 and u 6∈ A for A(u) = 0. An L-set A ∈ LU is called empty (denoted
by ∅) if A(u) = 0 for each u ∈ U . For a ∈ L and A ∈ LU , an ordinary set
aA = {u ∈ U |A(u) ≥ a} is called an a-cut of A. Given A, B ∈ LU , we define a
degree S(A, B) to which A is contained in B and a degree A ≈ B to which A is
equal to B by

S(A, B) =
∧

u∈U(A(u) → B(u)), A ≈ B =
∧

u∈U(A(u) ↔ B(u)).

In particular, we write A ⊆ B iff S(A, B) = 1. A binary L-relation ≈ on U is
called an L-equivalence if for any u, v, w ∈ U we have u ≈ u = 1 (reflexivity),
u ≈ v = v ≈ u (symmetry), (u ≈ v) ⊗ (v ≈ w) ≤ (u ≈ w) (transitivity); An
L-equality is an L-equivalence satisfying u = v whenever u ≈ v = 1.

Throughout this thesis, we use the following convention. If we want to em-
phasize the structure L of truth degrees, we say “L-set”, “L-Galois connection”,
etc., instead of “fuzzy set”, “fuzzy Galois connection”, etc., which we use if L is
not important or clear from context.

For further details we refer to [C1], [C24], [C26], [C31], [C38].
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2 Concept lattices and related structures

2.1 Concept lattices

Let L be a complete residuated lattice (our structure of truth degrees). If we
say “a fuzzy set”, “a fuzzy relation” and the like, we always mean a fuzzy set
(fuzzy relation) with truth degrees taken from the support L of L.

Data tables with fuzzy attributes A data table with fuzzy attributes, is
a triplet 〈X, Y, I〉 where X and Y are sets, and I : X × Y → L is a binary
fuzzy relation between X and Y which takes values in the support L of L. X
and Y are usually assumed to be finite; elements of X and Y are called objects
and attributes, respectively. A degree I(x, y) ∈ L is interpreted as a degree to
which object x ∈ X has attribute y ∈ Y . The notion of a data table with fuzzy
attributes is our formal counterpart to tables like the one in Fig. 1.2 (right) with
an obvious correspondence: objects x ∈ X and attributes y ∈ Y correspond
to table rows and columns, respectively; I(x, y) is the table entry at the row
corresponding to x and the column corresponding to y (the ordering of rows and
columns does not play any role in our considerations).

Arrow operators, formal concepts, and concept lattices Each table
〈X, Y, I〉 with fuzzy attributes induces a pair of operators ⇑ : LX → LY and
⇓ : LY → LX defined by

A⇑(y) =
∧

x∈X(A(x) → I(x, y)), B⇓(x) =
∧

y∈Y (B(y) → I(x, y)), (1)

for each A ∈ LX and B ∈ LY , and x ∈ X and y ∈ Y . A formal (fuzzy) concept
of 〈X,Y, I〉 is a pair 〈A, B〉 of fuzzy sets A ∈ LX and B ∈ LY satisfying A⇑ = B
and B⇓ = A. Put

B(X, Y, I) = {〈A, B〉 ∈ LX × LY |A⇑ = B, B⇓ = A}, (2)

Ext(X, Y, I) = {A ∈ LX | 〈A, B〉 ∈ B(X, Y, I) for some B}, (3)

Int(X, Y, I) = {B ∈ LY | 〈A, B〉 ∈ B(X, Y, I) for some A}. (4)

That is, B(X, Y, I) is the set of all formal concepts in 〈X, Y, I〉. Introduce a
partial order ≤ on B(X, Y, I) by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). (5)

The set B(X, Y, I) equipped by ≤ is called a (fuzzy) concept lattice of 〈X, Y, I〉.

Remark 1 (1) Using basic principles of fuzzy logic, one can see that A⇑(y) is
a truth degree of “for each object x: if x belongs to A then x has attribute
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y”. Therefore, A⇑ is a fuzzy set of all attributes shared by all objects from A.
Analogously, B⇓ is a fuzzy set of all objects sharing all attributes from B.

(2) Therefore, 〈A, B〉 is a formal concept iff A is the fuzzy set of all objects
sharing all attributes from B and, B is the fuzzy set of all attributes shared
by all objects from A. Elements of Ext(X, Y, I) are called extents; elements of
Int(X, Y, I) are called intents.

(3) An intuitive interpretation and terminology comes from Port-Royal ap-
proach to concepts [C3]. Under Port-Royal, a concept is understood as consisting
of a collection A of objects to which it applies and a collection B of attributes to
which it applies. Example: extent of concept DOG consists of all dogs, intent of
DOG consists of all attributes common to dogs (“barks”, “has a tail”, etc.). Note
that from the point of view of fuzzy approach it is quite natural that extents
and intents of concepts are fuzzy sets. Namely, this allows to capture vaguely
delineated concepts like LARGE DOG.

(4) Partial order ≤ is interpreted as a subconcept-superconcept hierarchy.
Namely, 〈A1, B1〉 ≤ 〈A2, B2〉 means that 〈A2, B2〉 is more general than 〈A1, B1〉
since it applies to a larger collection of objects (or, equivalently, applies to a
smaller collection of attributes). The structure of concept lattices will be in-
vestigated later. Among others, we will see that B(X, Y, I) equipped with ≤ is
indeed a complete lattice.

(5) Later on, we will study modifications of ⇑ and ⇓. Nevertheless, we start
with ⇑ and ⇓ since, as we will see later, they play the role of basic arrow operators.

(6) One can see that for L = 2 (two-element Boolean algebra), the above
notions coincide with the corresponding notions from ordinary FCA (provided
we identify crisp fuzzy sets/relations with ordinary sets/relations).

(7) Historical remark: The first approach to concept lattices is [C8]. How-
ever, the authors did not use residuated implication and, as a result, did not go
too far in their study. Note that later [C10], they proposed to use implications
including residuated ones. Another study of FCA in a fuzzy setting is presented
in Pollandt’s [C42]. This study uses residuated implication and the arrow op-
erators are defined as in (1). The author of the dissertation started to study
FCA in a fuzzy setting around 1997, at that time unaware of [C42]. Prior to
getting learning about [C42], there is some small overlap in the results of [C42]
and the author’s results. In general, the author’s results go farther than those
of [C42]. We will comment on this later on. There are several other definitions
of the arrow operators which can be found in the literature. We will provide a
brief comparison later.

Alternatively, formal concepts can be defined as maximal rectangles con-
tained in 〈X, Y, I〉. Call a rectangle any pair 〈A, B〉 ∈ LX ×LY . Put 〈A1, B1〉 v
〈A2, B2〉 iff for each x ∈ X and y ∈ Y we have A1(x) ≤ A2(x) and B1(y) ≤ B2(y)
(〈A1, B1〉 is a subrectangle of 〈A2, B2〉). We say that 〈A, B〉 is contained in I iff
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for each x ∈ X and y ∈ Y we have A(x)⊗B(y) ≤ I(x, y). Then we have

Theorem 2 ([B5]) 〈A, B〉 is a formal concept of 〈X, Y, I〉 iff 〈A, B〉 is maximal
(w.r.t. v) rectangle contained in I.

Remark 2 Theorem 2 provides a useful way of looking at formal concepts. In
crisp case (table contains ×’s and blanks), Theorem 2 says that formal concepts
are maximal rectangles in the table which are full of ×’s.

2.2 Fuzzy Galois connections and closure operators

We now turn to selected results on Galois connections and closure operators in
a fuzzy setting which are the basic structures related to the arrow operators ⇑

and ⇓. These results are taken from [A1], [A3], [A5], [A6], to which we refer for
details (further results, comments, examples, etc.).

Fuzzy Galois connections

Throughout this section, K denotes a ≤-filter in L, i.e. K ⊆ L satisfies that if
a ∈ K and a ≤ b then b ∈ K. Sometimes, K is assumed to be a filter in L, i.e.
a ≤-filter satisfying a ⊗ b ∈ K whenever a, b ∈ K. An LK-Galois connection
between non-empty sets X and Y is a pair 〈⇑, ⇓〉 of mappings ⇑ : LX → LY ,
⇓ : LY → LX , satisfying

S(A1, A2) ≤ S(A⇑
2 , A

⇑
1 ) whenever S(A1, A2) ∈ K, (6)

S(B1, B2) ≤ S(B⇓
2 , B⇓

1 ) whenever S(B1, B2) ∈ K, (7)

A ⊆ A⇑⇓, (8)

B ⊆ B⇓⇑, (9)

for every A, A1, A2 ∈ LX , B, B1, B2 ∈ LY .

Remark 3 (1) We usually omit the term “between X nd Y ” and say just LK-
Galois connection. For L = 2 (ordinary case), we obtain the usual notion of a
Galois connection between sets.

(2) K controls the meaning of the antitony conditions (6) and (7). Two im-
portant cases are K = L and K = {1}. For instance, (6) becomes “S(A1, A2) ≤
S(A⇑

2 , A
⇑
1 )” for K = L, and it becomes “if A1 ⊆ A2 then A⇑

2 ⊆ A⇑
1” for K = {1}.

Clearly, for K1 ⊆ K2, each LK2-Galois connection is also an LK1-Galois connec-
tion.

(3) (6)–(9) can be simplified [A3]: 〈⇑, ⇓〉 is an LK-Galois connection iff
S(A, B) ∈ K or S(B, A) ∈ K implies S(A, B⇓) = S(B, A⇑).

(4) LK-Galois connections obey several useful properties which we omit here
due to lack of space.
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Axiomatic characterization of arrow operators The arrow operators de-
fined by (1) can be characterized axiomatically. Namely, they turn out to be
just LL-Galois connections:

Theorem 3 ([A1]) For a binary L-relation I between X and Y denote by
〈⇑I , ⇓I 〉 the mappings defined by (1). For an LL-Galois connection 〈⇑, ⇓〉 between
X and Y denote I〈⇑,⇓〉 a binary L-relation between X and Y defined by

I〈⇑,⇓〉(x, y) = {1/x}⇑(y) = {1/y}⇓(x).

Then 〈⇑I , ⇓I 〉 is an LL-Galois connection and I 7→ 〈⇑I , ⇓I 〉 and 〈⇑, ⇓〉 7→ I〈⇑,⇓〉
define a bijective correspondence between binary L-relations and LL-Galois con-
nections between X and Y .

Remark 4 Theorem 3 generalizes a classical result by Ore [C39].

Representation by ordinary Galois connections: case 1 A natural ques-
tion regarding the relationship of ordinary and fuzzy concept lattices is the fol-
lowing: Isn’t there some simple relationship between the arrow operators ⇑I and
⇓I induced by a fuzzy relation I on the one hand, and the ordinary arrow oper-
ators ⇑aI and ⇓aI induced by a-cuts aI of I? For instance, isn’t it the case that
a(A⇑I ) = (aA)⇑aI , i.e. that A⇑I can be computed cut-by-cut using ⇑aI ’s? If yes,
this would imply some simple relationships between B(X, Y, I) and B(X, Y, aI).
It turns out that the answer to the above question is negative. Nevertheless,
there is a relationship between fuzzy Galois connections and ordinary Galois
connections which we present here. It consists in establishing a bijective cor-
respondence between LL-Galois connections and particular systems of ordinary
Galois connections.

A system {〈⇑a , ⇓a〉 | a ∈ L} of ordinary Galois connections between X and
Y is called L-nested if (1) for each a, b ∈ L, a ≤ b, A ⊆ X, B ⊆ Y , we have
A⇑a ⊇ A⇑b , B⇓a ⊇ B⇓b , (2) for each x ∈ X, y ∈ Y , the set {a ∈ L | y ∈ {x}⇑a}
has a greatest element. The we have:

Theorem 4 ([A1],[B1]) For an LL-Galois connection 〈⇑, ⇓〉 denote C〈⇑,⇓〉 =
{〈⇑a , ⇓a〉 | a ∈ L} where ⇑a : 2X → 2Y and ⇓a : 2Y → 2X are defined by
A⇑a = a(A⇑) and B⇓a = a(B⇓) for A ∈ 2X , B ∈ 2Y . For an L-nested system
C = {〈⇑a , ⇓a〉 | a ∈ L} of ordinary Galois connections denote 〈⇑C , ⇓C〉 the pair of
⇑C : LX → LY and ⇓C : LY → LX defined for A ∈ LX , B ∈ LY by

A⇑C(y) =
∨
{a | y ∈

⋂
b∈L(bA)⇑a⊗b}, B⇓C(x) =

∨
{a | x ∈

⋂
b∈L(bB)⇑a⊗b}.

Then

(1) C〈⇑,⇓〉 is a nested system of L-Galois connections,

13



(2) 〈⇑C , ⇓C〉 is an L-Galois connection,
(3) 〈⇑, ⇓〉 7→ C〈⇑,⇓〉 and C 7→ 〈⇑C , ⇓C〉 define bijective correspondence between LL-

Galois connections and L-nested systems of ordinary Galois connections.

Remark 5 (1) Note that Theorem 4 can be obtained as a consequence of results
on cut-like semantics for fuzzy logic as presented in [B1]. A particular (and
trivial) case of the cut-like semantics is a result on representation of fuzzy sets
by their a-cuts.

(2) Theorem 4 can be used to get insight to some approaches to FCA in a
fuzzy setting which are based on decomposing 〈X,Y, I〉 into the cuts 〈X, Y, aI〉,
see [B23].

Representation by ordinary Galois connections: case 2 We now present
another representation of fuzzy Galois connections by ordinary Galois connec-
tions. It consists in establishing a bijective correspondence between L{1}-Galois
connections between X and Y and particular ordinary Galois connections be-
tween X × L and Y × L. This representation is useful for establishing a rela-
tionship between fuzzy and ordinary concept lattices.

For A ∈ LU let bAc ⊆ U ×L be defined by bAc = {〈u, a〉 | a ≤ A(u)}. Thus,
bAc is the “area below the membership function A” in U × L. For A ⊆ U × L
let dAe ∈ LU be defined by dAe(u) =

∨
{a | 〈u, a〉 ∈ A}. Thus, dAe is a fuzzy set

in U resulting as an “upper envelope of A”. Call an ordinary Galois connection
〈∧, ∨〉 between X × L and Y × L is called commutative w.r.t. bd ec if for each
A ⊆ X × L, B ⊆ Y × L we have

bdAec∧ = bdA∧ec and bdBec∨ = bdB∨ec. (10)

For a pair 〈∧, ∨〉 of mappings ∧ : X × L → Y × L, ∨ : Y × L → X × L
introduce a pair of mappings ⇑〈∧,∨〉 : LX → LY , ⇓〈∧,∨〉 : LY → LX by

A⇑〈∧,∨〉 = dbAc∧e and B⇓〈∧,∨〉 = dbBc∨e (11)

for A ∈ LX , B ∈ LY . For a pair 〈⇑, ⇓〉 of mappings ⇑ : LX → LY , ⇓ : LY → LX

define a pair of mappings
∧〈⇑,⇓〉 : X × L → Y × L,

∨〈⇑,⇓〉 : Y × L → X × L by

A
∧〈⇑,⇓〉 = bdAe⇑c and B

∨〈⇑,⇓〉 = bdBe⇓c (12)

for A ⊆ X × L, B ⊆ Y × L. Then we have:

Theorem 5 ([A4]) Let 〈⇑, ⇓〉 be an L{1}-Galois connection between X and Y
and 〈∧, ∨〉 be a ordinary Galois connection between X × L and Y × L which is
commutative w.r.t. bd ec. Then

(1) 〈∧〈⇑,⇓〉 ,
∨〈⇑,⇓〉〉 is an ordinary Galois connection between X × L and Y × L

which is commutative w.r.t. bd ec;
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(2) 〈⇑〈∧,∨〉 , ⇓〈∧,∨〉〉 is an L{1}-Galois connection between X and Y ;
(3) Sending 〈⇑, ⇓〉 to 〈∧〈⇑,⇓〉 ,

∨〈⇑,⇓〉〉 and 〈∧, ∨〉 to 〈⇑〈∧,∨〉 , ⇓〈∧,∨〉〉 defines a bijec-
tive correspondence between L{1}-Galois connections between X and Y and
commutative Galois connections between X × L and Y × L.

This observation has some important consequences for the relationship be-
tween fuzzy concept lattices and ordinary concept lattices. We now present
selected results. Under the above notation, denote B(X, Y, 〈⇑, ⇓〉) = {〈A, B〉 ∈
LX × LY |A⇑ = B, B⇓ = A} and B(X × L, Y × L, 〈∧, ∨〉) = {〈A, B〉 ∈ 2X×L ×
2Y×L |A∧ = B, B∨ = A}, i.e. the sets of fixpoints of the respective Galois con-
nections. Note that if 〈⇑, ⇓〉 are the arrow operators induced by 〈X, Y, I〉, then
B(X, Y, 〈⇑, ⇓〉) is just the L-concept lattice B(X, Y, I). Then, using

Lemma 1 ([A4]) For any LK-Galois connection 〈⇑, ⇓〉, if 〈∧, ∨〉 = 〈∧〈⇑,⇓〉 ,
∨〈⇑,⇓〉〉

as in Theorem 5, then B
(
X, Y, 〈⇑, ⇓〉

)
and B (X × L, Y × L, 〈∧, ∨〉) are isomor-

phic lattices. Moreover, B (X × L, Y × L, 〈∧, ∨〉) = B (X × L, Y × L, I×) where
I× ⊆ (X × L)× (Y × L) is defined by 〈〈x, a〉, 〈y, b〉〉 ∈ I× iff b ≤ { a

/
x}⇑(y).

one can prove

Theorem 6 ([A4]) Any L-concept lattice B (X, Y, I) is isomorphic to the ordi-
nary concept lattice B (X × L, Y × L, I×) where 〈〈x, a〉, 〈y, b〉〉 ∈ I× iff a ⊗ b ≤
I(x, y). An isomorphism is given by sending 〈A, B〉 ∈ B(X, Y, I) to
〈bAc, bBc〉 ∈ B (X × L, Y × L, I×).

An almost direct consequence of Lemma 1 and Theorem 6 we get a the-
orem characterizing the lattice of fixed points of L{1}-Galois connections [A4]
(Theorem 3.4) a particular case of which is the following theorem.

Theorem 7 ([A4]) Let 〈X, Y, I〉 be a data table with fuzzy attributes. (1) Then
B(X, Y, I) is a complete lattice w.r.t. ≤ where the suprema and infima are given
by∧

j∈J 〈Aj, Bj〉 = 〈
⋂

j∈J Aj, (
⋃

j∈J Bj)
⇓⇑〉 ,

∨
j∈J 〈Aj, Bj〉 = 〈(

⋃
j∈J Aj)

⇑⇓,
⋂

j∈J Bj〉 .

(2) Moreover, an arbitrary complete lattice V = 〈V,≤〉 is isomorphic to B (X, Y, I)
iff there are mappings γ : X × L → V , µ : Y × L → V such that

(i) γ(X, L) is supremally dense in V , µ(Y, L) is infimally dense in V ;

(ii) γ(x, a) ≤ µ(y, b) iff a⊗ b ≤ I(x, y).
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Note that Theorem 6 is a “reduction theorem” which, in principle, enables us
to reduce several problems concerning fuzzy concept lattices (e.g., computing a
fuzzy concept lattice) to the corresponding problems of ordinary concept lattices.
We will go back to this issue later on. Theorem 7 plays a role of a Main theorem
for concept lattices in a fuzzy setting. Note that Theorem 1, i.e. the Main
theorem for ordinary concept lattices, is a particular case of Theorem 7. As we
will see in Section 2.3, Theorem 7 is a version of the main theorem for concept
lattices which concerns crisp order on B(X, Y, I). The other version, concerning
fuzzy order on B(X, Y, I), will be presented in Section 2.3 where we will also
see an alternative way to prove Theorem 7 (directly, not via reduction to the
ordinary case).

Fuzzy closure operators

Fuzzy closure operators are important structures widely studied in fuzzy set
theory, see e.g. [B1], [C21]. They are closely related to FCA in a fuzzy setting,
but play a role in other areas as well, analogously as in case of ordinary closure
operators. Let K be a filter in L (in some cases, ≤-filter suffices). An LK-closure
operator in a non-empty set X is a mapping C : LX → LX satisfying

A ⊆ C(A), (13)

S(A1, A2) ≤ S(C(A1), C(A2)) whenever S(A1, A2) ∈ K, (14)

C(A) = C(C(A)) (15)

for every A, A1, A2 ∈ LX .

Remark 6 As in case of LK-Galois connections, K influences the meaning of
the monotony condition (14). Two important cases are K = L and K = {1}
for which (14) becomes “S(A1, A2) ≤ S(C(A1), C(A2))” and “if A1 ⊆ A2 then
C(A1) ⊆ C(A2)”. Note that most of the literature on fuzzy closure operators
deals with K = {1} only.

Results of the dissertation related to fuzzy closure operators are contained
mainly in [A3], [A5], [A6]. In what follows, we present selected results of these
papers.

The first result concerns a characterization of systems of fixpoints of LK

closure operators. Recall that it is well known from an ordinary case that a
system S of subsets of X is a system of fixpoints of some closure operator on X
iff it is closed under arbitrary intersections. In our setting we have

Theorem 8 ([A3]) A system S ⊆ LX is a system of fixpoints of some LK-
closure operator C in X, i.e. S = {A ∈ LX |A = C(A)}, iff for each a ∈ K and
A ∈ S we have a → A ∈ S and for any Ai ∈ S (i ∈ I) we have

⋂
i∈I Ai ∈ S.
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Remark 7 (1) Note that a → A (a-shift of A) is defined by (a → A)(x) = a →
A(x). That is, systems of fixpoints are just systems closed under a-shifts for
a ∈ K and closed under arbitrary intersections.

(2) [A3] contains further characterizations of systems of fixpoints of fuzzy clo-
sure operators and describes explicitly the operators bijective mappings between
LK-closure operators and systems of their fixpoints. For interior operators, the
corresponding results are in [A10] (note that due to lack of the law of double
negation, we cannot get these results dually from the results on closure operators
as in the ordinary case).

(3) [A5] contains further results on LK-closure operators, namely: fuzzy clo-
sure operators induced by binary fuzzy relations; representation of L{1}-closure
operators in X by ordinary closure operators in X×L; operators of consequence
and some furhter results.

Fuzzy closure operators induced by similarity An important case of
fuzzy closure operators studied in literature comes from the formula

C≈(A)(y) =
∨

y∈X(A(x)⊗ (x ≈ y))

where ≈ is an L-equivalence on X (called also similarity in fuzzy set literature),
see Section 1.3. C≈ is a mapping of LX into itself. C≈(A) is usually called an
extensional hull of A. Fuzzy sets A which are closed under C≈ are sometimes
called compatible with ≈ (alternative characteziration: A(x)⊗ (x ≈ y) ≤ A(y)).
It turns out that C≈ is a particular fuzzy closure operator (fuzzy closure operator
induced by similarity) the characterization of which is given by the following
theorem:

Theorem 9 ([A6]) (1) Let ≈ be an L-equivalence on X. Then C≈ is an LL-
closure operator on X satisfying, moreover,

C≈(
⋃

i∈I Ai) =
⋃

i∈I C≈(Ai), (16)

C≈({a/x}) = a⊗ C≈({a/x}), (17)

C≈({1/x})(y) = C≈({1/y})(x), (18)

for any Ai ∈ LX (i ∈ I), x, y ∈ X, a ∈ L.
(2) Let C be an LL-closure operator on X satisfying (16)–(18). Then putting
x ≈C y = C({1/x})(y), ≈C is an L-equivalence on X.
(3) The mappings sending ≈ to C≈ and C to ≈C provide a bijection between
L-equivalences and LL-closure operators in X satisfying (16)–(18).

Remark 8 [A6] contains some further results: characterization of systems of
fixpoints of of fuzzy closure operators C≈ (they are just systems S of fixpoints
of LL-closure operators which are, moreover, closed under arbitrary unions and
satisfy A → a ∈ S a a⊗A ∈ S for any a ∈ L and A ∈ S); results on relationship
of similarity-based closure and metric closure.
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Fuzzy closure operators and Galois connections In this section, we
present selected results on relationships between fuzzy closure operators and
fuzzy Galois connections. We have seen that the arrow operators ⇑ and ⇓ in-
duced by a table with fuzzy attributes form an LL-Galois connection. The
following result is an excerpt of results from [A3] which describe a bijective cor-
respondence between LK-Galois connections and pairs of LK-closure operators
with dually isomorphic systems of fixpoints.

Theorem 10 ([A3]) Let 〈⇑, ⇓〉 be an LL-Galois connection between X and Y ,
C be an LL-closure operator on X. Then

(1) C〈⇑,⇓〉 : LX → LX defined by C〈⇑,⇓〉(A) = A⇑⇓ is an LL-closure operator on
X;

(2) for Y = {A ∈ LX |A = C(A)}, operators ⇑C and ⇓C defined by

A⇑C(A′) = S(A, A′), B⇓C(x) =
∧

A∈Y B(A) → A(x)

form an LL-Galois connection between X and Y ;

(3) C = C〈⇑C ,⇓C 〉.

Therefore, given 〈X, Y, I〉, both ⇑⇓ and ⇓⇑ are LL-closure operators.

Computing a concept lattice Since (easy to see)

B(X, Y, I) = {〈A, A⇑〉 |A ∈ Ext(X, Y, I)} and Ext(X, Y, I) = fix(⇑⇓),

where fix(⇑⇓) is the set of all fixpoints of ⇑⇓, in order to compute B(X, Y, I), it
is sufficient if we are able to compute fix(C) for a given fuzzy closure operator
C. Computing systems of fixpoints of fuzzy closure operators appears several
times in FCA (we will see some cases later). For this purpose, we now briefly
present and algorithm which is an extension of Ganter’s NextClosure algorithm
[C17] to our setting, for details see [A8]. The algorithm outputs all fixed points
of C in a lexicographic order defined below.

Suppose X = {1, 2, . . . , n}; L = {0 = a1 < a2 < · · · < ak = 1} (the assump-
tion that L is linearly ordered is in fact not essential). For i, r ∈ {1, . . . , n},
j, s ∈ {1, . . . , k} we put

(i, j) ≤ (r, s) iff i < r or i = r, aj ≥ as.

For A ∈ LX , (i, j) ∈ X × {1, . . . , k}, put

A⊕ (i, j) := C((A ∩ {1, 2, . . . , i− 1}) ∪ { aj
/
i}).
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Furthermore, for A, B ∈ LX , define

A <(i,j) B iff A ∩ {1, . . . , i− 1} = B ∩ {1, . . . , i− 1} and A(i) < B(i) = aj,

A < B iff A <(i,j) B for some (i, j).

< is a lexicographic order on LX and we have:

Theorem 11 ([A8]) The least fixed point A+ which is greater (w.r.t. <) than
a given A ∈ LX is given by

A+ = A⊕ (i, j)

where (i, j) is the greatest one with A <(i,j) A⊕ (i, j).

The algorithm for computing fix(⇑⇓) starts with C(∅) (the least fixpoint of C)
and using Theorem 11 generates all other fixpoints up to X in a lexicographic
order <, see [A8]. Note that due to Theorem 6, B(X, Y, I) can, in principle, be
computed using algorithms for ordinary concept lattices.

2.3 Main theorem on concept lattices

From certain point of view, Theorem 7 is not satisfactory. It concerns an ordi-
nary partial order ≤ on B(X, Y, I), while B(X, Y, I) can naturally be considered
as equipped with a fuzzy partial order � and a fuzzy equality ≈ defined by

(〈A1, B1〉 � 〈A2, B2〉) =
∧

x∈X(A1(x) → A2(x)) =
∧

y∈Y (B2(y) → B1(y)),

(〈A1, B1〉 ≈ 〈A2, B2〉) =
∧

x∈X(A1(x) ↔ A2(x)) =
∧

y∈Y (B1(y) ↔ B2(y)). (19)

Moreover, in the ordinary case, B(X, Y, I) equipped with ≤ is isomorphic to
B(B(X,Y, I),B(X, Y, I),≤) and if 〈V,≤〉 is a partially ordered set then B(V, V,≤
) is the Dedekind-MacNeille completion of 〈V,≤〉 [C17]. Therefore, it is inter-
esting to ask whether we can have analogous results and notions (like that of a
complete lattice) in a fuzzy setting as well. This problem was studied in [A7].
Without going into details, we now summarize the main results.

An L-ordered set is a pair 〈〈V,≈〉 �〉 where ≈ is an L-equality on V (see
Section 1.3) and � is an L-order on 〈V,≈〉, i.e. � is reflexive, transitive (see
Section 1.3), and satisfies (u � v) ∧ (v � u) ≤ (u ≈ v) (antisymmetry). Then,
one can introduce the notions of infimum, supremum, infimal and supremal
density, etc., in an L-ordered set and obtain the following theorem which, from
the above point of view is “the proper” version of the Main theorem of concept
lattices in a fuzzy setting:

Theorem 12 ([A7]) (1) 〈〈B (X, Y, I),≈〉,�〉 is completely lattice L-ordered set
in which infima and suprema are described as in [A7].

19



(2) Moreover, a completely lattice L-ordered set V = 〈〈V,≈〉,�〉 is isomor-
phic to 〈〈B (X,Y, I),≈〉,�〉 iff there are mappings γ : X ×L → V , µ : Y ×L →
V , such that γ(X ×L) is supremally dense in V, µ(Y ×L) is infimally dense in
V, and ((a⊗ b) → I(x, y)) = (γ(x, a) � µ(y, b)) for all x ∈ X, y ∈ Y , a, b ∈ L.
In particular, V is isomorphic to B (V, V,�).

Remark 9 (1) The ordinary Main theorem of concept lattices is a particular
case of Theorem 12 for L = 2. Moreover, inspecting the proof of Theorem 12
gives us a direct proof of Theorem 7.

(2) If 〈〈V,≈〉,v〉 is an L-ordered set, 〈〈B (V, V,v),≈〉,�〉 behaves the same
way as the Dedekind-MacNeille completion in the ordinary case, see [A7].

(3) An interesting property was shown in [B11]: a complete lattice L-order
� is uniquely given by its 1-cut 1�.

2.4 Factorization by similarity

Factor lattice by similarity In [A2], we investigated similarity relations in
concept lattices and in FCA. For illustration, we now focus on factorization by
similarity. Fuzzy equivalence ≈ defined by (19) can be interpreted as a similarity
on B(X, Y, I). Since B(X, Y, I) might be large, it is natural to ask whether one
can “put sufficiently similar formal concepts together” and consider a simplified
version of B(X, Y, I) in which one identifies the “sufficiently similar” formal
concepts. These ideas, studied in [A2] and then in [A10], lead to a construction
of a factor lattice B(X, Y, I)/a≈ of B(X,Y, I) which is driven by a parameter
a ∈ L supplied by a user. A brief description follows.

For a given parameter a ∈ L (similarity threshold, supplied by a user),
consider the a-cut a≈. In general, a≈ is a tolerance (i.e., reflexive and symmetric)
relation on B(X, Y, I) containing pairs of formal concepts which are pairwise
similar in degree at least a. Note that, in general, algebras can be factorized
using congruence relations, i.e. compatible equivalences. Surprisingly, Czédli
[C14] and later Wille [C17] showed that in case of complete lattices, factorization
is possible even with compatible tolerance relations. As can be shown, a≈ is
compatible with infima and suprema in B(X, Y, I) [A2] and, thus, we can define
a factor lattice B(X, Y, I)/a≈:

(1) elements of B(X, Y, I)/a≈ are blocks of a≈, i.e. maximal sets B ⊆ B(X, Y, I)
of concepts s. t. any two concepts from B are similar in degree at least a;

(2) each block B is, in fact, an interval in B(X, Y, I), i.e. B = [c1, c2] = {d ∈
B(X, Y, I) | c1 ≤ d ≤ c2} for some c1, c2 ∈ B(X,Y, I);

(3) putting [c1, c2] � [d1, d2] iff c1 ≤ d1 (iff c2 ≤ d2) we get:

Theorem 13 ([A2]) B(X, Y, I)/a≈ equipped with � is a complete lattice, the
so-called factor lattice of B(X, Y, I) by similarity ≈ and threshold a.
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Elements of B (X, Y, I)/a≈ can be seen as similarity-based granules of formal
concepts from B (X, Y, I). B (X, Y, I)/a≈ thus provides a granular view on (the
possibly large) B (X, Y, I). If a≈ is transitive then it is a congruence relation on
B (X, Y, I) and B (X,Y, I)/a≈ is the usual factor lattice modulo a congruence.

Fast factorization by similarity In order to compute B (X, Y, I)/a≈ using
its definition one has (1) to compute the whole concept lattice B (X, Y, I) and
then (2) to compute a≈-blocks on B (X, Y, I), which can be quite demanding.
A question is if B (X, Y, I)/a≈ can be computed directly from 〈X, Y, I〉 and a,
i.e. without computing the possibly large B (X, Y, I). A positive answer was
presented in [A10]. A brief description follows.

The method is based on the fact that each element of B (X, Y, I)/a≈ is in fact
an interval in B (X, Y, I)/a≈, i.e. is of the form [〈C, D〉, 〈A, B〉]. Furthermore,
it can be shown that 〈C, D〉 is uniquely given by 〈A, B〉 and, since B = A⇑,
by A. In order to generate B (X, Y, I)/a≈, it is thus enough if we know how to
generate the set

ESB(a) = {A ∈ LX | 〈A, B〉 ∈ B (X, Y, I) and [. . . , 〈A, B〉] ∈ B (X, Y, I)/a≈}

of all extents of suprema of a≈-blocks. It turns out that ESB(a) is just the set
of fixpoints of a suitable fuzzy closure operator:

Theorem 14 ([A10]) For any 〈X, Y, I〉 and a threshold a ∈ L, a mapping Ca

sending a fuzzy set A in X to a fuzzy set a → (a⊗A)⇑⇓ in X is a fuzzy closure
operator in X for which fix(Ca) = ESB(a).

Computing fix(Ca) can be accomplished using the above algorithm. As
demonstrated in [A10], the procedure just described leads to a significant speed-
up compared to the “naive” method consisting in computing first B (X,Y, I)
and then computing the a≈-blocks.

2.5 Concept lattices with hedges

The approach In [B19], we studied so-called crisply generated fuzzy concepts
and related concept lattices, i.e. formal fuzzy concepts 〈A, B〉 ∈ B(X,Y, I)
such that A = D⇓ and B = D⇓⇑ for some crisp set D ⊆ Y of attributes.
Crisply generated concepts can be identified with crisp sets of attributes and are
usually considered as “the natural” concepts by users. In addition, the number
of crisply generated concepts is usually significantly smaller than the number of
all formal concepts, which is another advantage. Later on [A11], we introduced
a parameterized approach to fuzzy concept lattices using so-called hedges, see
Section 1.3. The resulting concept lattices play an interesting role. A brief
description follows.
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Let ∗X and ∗Y be hedges. Consider the following modification of arrow
operators induced by 〈X, Y, I〉:

A↑(y) =
∧

x∈X

(
A(x)∗X → I(x, y)

)
, B↓(x) =

∧
y∈Y

(
B(y)∗Y → I(x, y)

)
.

Hedges ∗X and ∗Y play the role of parameters. Note that the verbal description
of ↑ and ↓ is almost the same as that of ⇑ and ⇓. For instance, A↑(y) is a truth
degree of “for each x ∈ X: if it is very true that x belongs to A then x has
attribute y”, etc. For L = 2 (crisp case), both 〈⇑, ⇓〉 and 〈↑, ↓〉 coincide with the
ordinary operators. Hence, with hedges, the meaning remains the same and we
deal with a sound generalization of the ordinary case. A fuzzy concept lattice
with hedges is then the set

B(X∗X , Y ∗Y , I) = {〈A, B〉 ∈ LX× LY |A↑ = B, B↓ = A}.

B(X∗X , Y ∗Y , I), equipped with a partial order ≤ defined by (5) is a complete
lattice. The following is the Main theorem for concept lattices with hedges
(fix(∗) = {a ∈ L | a∗ = a} denotes the fixpoints of ∗):

Theorem 15 ([A11]) (1) B (X∗X , Y ∗Y , I) is under ≤ a complete lattice where
the infima and suprema are given by∧
j∈J

〈Aj, Bj〉 = 〈(
⋂
j∈J

Aj)
↑↓, (

⋃
j∈J

B∗Y
j )↓↑〉,

∨
j∈J

〈Aj, Bj〉 = 〈(
⋃
j∈J

A∗X
j )↑↓, (

⋂
j∈J

Bj)
↓↑〉.

(2) Moreover, an arbitrary complete lattice K = 〈K,≤〉 is isomorphic to
B (X∗X , Y ∗Y , I) iff there are mappings γ : X×fix(∗X) → K, µ : Y ×fix(∗Y ) → K
such that

(i) γ(X × fix(∗X)) is
∨

-dense in K, µ(Y × fix(∗Y )) is
∧

-dense in V ;

(ii) γ(x, a) ≤ µ(y, b) iff a⊗ b ≤ I(x, y).

Further results The following are selected results on concept lattices with
hedges:

(1) Mutual relationships of concept lattices with hedges for different choices
of hedges (stronger hedges lead to smaller concept lattices), [A11], [B25].

(2) Galois connections closure operators for the case with hedges; they play a
similar role as fuzzy Galois connections and closure operators in the basic
approach without hedges, see [A14], [A14].

(3) Reduction theorem analogous to Theorem 6, see [A11].
(4) B(X∗X , Y, I) (case in which ∗Y is identity) plays an important role for

attribute implications, see Section 3.
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Other approaches to concept lattices Concept lattices with hedges provide
a common generalization for several approaches to FCA in a fuzzy setting which
appeared in the literature (see [B23] for details on comparison):

(1) If both ∗X and ∗Y are identities, B(X∗X , Y ∗Y , I) is just the fuzzy concept
lattice (without hedges), see (2).

(2) If both ∗X and ∗Y are globalizations, B(X∗X , Y ∗Y , I) is isomorphic (and
almost equal) to the ordinary concept lattice B(X, Y, 1I).

(3) If ∗X is identity and ∗Y is globalization, B(X∗X , Y ∗Y , I) coincides with the
crisply generated fuzzy concept lattice [B19]. In addition, B(X∗X , Y ∗Y , I)
is isomorphic (and almost identical) to a what is called a fuzzy concept
lattice in [C48]. If ∗X is globalization and ∗Y is identity, B(X∗X , Y ∗Y , I)
is isomorphic (and almost identical) to a “one-sided fuzzy concept lattice”
of [C32].

(4) Recently introduced fuzzy concept lattices with thresholds [C16] are, again,
isomorphic to concept lattices with hedges, see [B26].

2.6 Constrained concept lattices

In its basic setting, FCA (both in ordinary and fuzzy setting) works with a table
〈X,Y, I〉 is the only input data. It is, however, often the case that a user has
some additional information along with the input 〈X, Y, I〉. For instance, the
additional information C may concern the importance of attributes. C can then
be used as a constraint in such a way that only those formal concepts which
satisfy the constraint C are considered relevant. That is, instead of the whole
B(X,Y, I), we are interested in

BC(X, Y, I) = {〈A, B〉 ∈ B(X, Y, I) | 〈A, B〉 satisfies constraint C}.

In [B12], [B17], [B18], we studied some particular cases of constraints. It turned
out that several seemingly different constraints are particular cases “constraints
by (fuzzy) closure operators” which were introduced in [A20]. We now briefly
describe the idea and some examples of these constraints. Note that the idea of
constrained concept lattices provides a new method not only in a fuzzy setting
but also in the ordinary setting. In our approach, a constraint is represented by
a fuzzy closure operator C in the set Y of attributes (or, dually, in X). Given
C, a constrained concept lattice is defined by

BC(X, Y, I) = {〈A, B〉 ∈ B(X, Y, I) |B = C(B)}.

That is, a formal concept 〈A, B〉 satisfies a user’s constraint (is interesting) iff
B is a fixed point of C. Constrained lattices are, indeed, complete lattices:
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Theorem 16 ([A20]) Then BC(X, Y, I) equipped with ≤ defined by (5) is a
complete lattice which is a

∨
-sublattice of B(X,Y, I).

Furthermore, the following gives a way to compute BC(X, Y, I) for finite L: For
any B ∈ LY define fuzzy sets Bi and C(B) by

Bi =

{
B if i = 0,
C(Bi−1

↓↑) if i ≥ 1.
C(B) =

⋃∞
i=1 Bi. (20)

Theorem 17 ([A20]) C is a fuzzy closure operator such that fix(C) = {B ∈
LY | 〈B⇓, B〉 ∈ BC(X, Y, I)}.

Therefore, BC(X, Y, I) can easily be restored from the fixpoints fix(C) of C and
the fixpoints of C can be computed by the algorithm presented above.

We now present selected examples of constraining fuzzy closure operators.
The operators will be represented by their sets of fixpoints.

(1) INCL(Z) where Z ∈ LY : fix(INCL(Z)) = {B ∈ LY |Z ⊆ B},
i.e. B is considered interesting iff B contains a prescribed collection Z of
attributes.

(2) CARDLEQ(n) where n ∈ N: fix(CARDLEQ(n)) = {B ∈ LY | |B| ≤
n} ∪ {Y },
where | · · · | is a suitably defined cardinality. Thus, B is considered inter-
esting iff B contains at most n attributes (or B = Y ).

(3) SUPP(n) where n ∈ N: fix(SUPP(n)) = {B ∈ LY | |B⇓| ≥ n} ∪ {Y },
where | · · · | is a suitably defined cardinality. Thus, B is considered in-
teresting iff the support of B (in terms of mining association rules, i.e.
the number of elements sharing all attributes from B) is at least n. It is
interesting to note that in crisp case (L = 2), 〈A, B〉 ∈ BSUPP(n)(X,Y, I)
iff B is a so-called closed frequent itemset. Closed frequent itemsets are
used for mining non-redundant associaton rules, see e.g. [C49].

(4) FACTOR(a) where a ∈ L: [FACTOR(a)](A) = a → (a⊗ A)⇑⇓.
This shows that factorization by similarity described in Section 2.4 can
be considered a particular case of constraining by fuzzy closure oper-
ators. Namely, BFACTOR(a)(X, Y, I) is isomorphic to the factor lattice
B(X, Y, I)/a≈.

Further examples (e.g. further constraints concerning presence/absence of at-
tributes, constraints imposed by required attribute dependencies, “conjunctions”
of constraints) can be found in [A20] and also in [B27].
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3 Attribute implications

Attribute implications (AIs) are formulas/expressions A ⇒ B describing partic-
ular attribute dependencies. In addition to FCA, AIs are known in several other
areas. In data mining, AIs are called association rules, see e.g. [C50] but also
[C28]. In relational databases, AIs are called functional dependencies, see e.g.
[C37]. In this part of the thesis we present selected results of the dissertation
which concern attribute implications in a fuzzy setting. Section 3.1 provides
basic notions. Section 3.2 deals with semantic issues like semantic consequence,
non-redundant bases, etc. Section 3.3 presents two kinds of logics for reasoning
with attribute dependencies with their completeness theorems. Section 3.4 deals
with computational aspects. In Section 3.5, we provide a database semantics for
AIs and deal with functional dependencies in a fuzzy setting.

3.1 Attribute implications, validity, theories and models

Fuzzy attribute implications Suppose Y is a finite set (of attributes). A
fuzzy attribute implication over Y (FAI) is an expression A ⇒ B, where A, B ∈
LY (A and B are fuzzy sets of attributes). FAIs are our basic formulas. We want
to interpret them in data tables 〈X, Y, I〉 with fuzzy attributes. The intended
meaning of A ⇒ B being true in 〈X,Y, I〉 is, basically: “for each row x ∈ X: if
x has all attributes from A then X has all attributes from B”. We proceed in a
general way using a hedge ∗ (see later for comments).

Validity Let thus M ∈ LX be a fuzzy set of attributes (e.g. of some object,
i.e. a row in 〈X,Y, I〉). Define a degree ||A ⇒ B||M to which A ⇒ B is true in
M by

||A ⇒ B||M = S(A, M)∗ → S(B, M), (21)

where S(· · · ) is a degree of subsethood, see Section 1.3. For a system M of
L-sets in Y , define a degree ||A ⇒ B||M to which A ⇒ B is true in (each M
from) M by

||A ⇒ B||M =
∧

M∈M ||A ⇒ B||M . (22)

Finally, a data table 〈X, Y, I〉 with fuzzy attributes, define a degree ||A ⇒
B||〈X,Y,I〉 to which A ⇒ B is true in 〈X, Y, I〉 by

||A ⇒ B||〈X,Y,I〉 = ||A ⇒ B||{Ix |x∈X}, (23)

where Ix ∈ LY is defined by Ix(y) = I(x, y), i.e. Ix is a fuzzy set of attributes
of object x (row corresponding to x in the table).
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Remark 10 (1) Since ∗ is a truth function of “very true”, if M is a fuzzy set
of attributes of object x, ||A ⇒ B||M is a truth degree of “if it is very true that
x has all attributes from A then x has all attributes from B”. Therefore, the
above definitions give us the desired interpretation of FAIs.

(2) In fact, ∗ controls the semantics of FAIs. Two boundary cases of ∗
give us basic different ways to the meaning of FAIs: For ∗ being identity and
globalization, ||A ⇒ B||M = 1 (A ⇒ B is fully true) means

S(A, M) ≤ S(B, M), and “if A ⊆ M then B ⊆ M ′′,

respectively.
(3) For L = 2, FAIs coincide with ordinary AIs and the above semantics

coincides with the ordinary one.
(4) Degrees A(y) and B(y) can be seen as thresholds. This is best seen

when ∗ is globalization. Then, ||A ⇒ B||〈X,Y,I〉 = 1 means that “for each object
x ∈ X: if for each attribute y ∈ Y , x has y to degree greater than or equal
to (a threshold) A(y), then for each y ∈ Y , x has y to degree at least B(y)”.
In general, ||A ⇒ B||〈X,Y,I〉 is a truth degree of the latter proposition. That is,
having A and B fuzzy sets allows a rich expressibility of relationships between
attributes.

Theories and models Each fuzzy set T of FAIs will be called a theory. A
degree T (A ⇒ B) is interpreted as a degree to which A ⇒ B is prescribed
(justified) by T (see also [C21], [C26], [C38]). As a particular case, sets of FAIs
are theories. For a theory T of FAIs, a set Mod(T ) of all models of T is defined
by

Mod(T ) = {M ∈ LY | for each A, B ∈ LY : T (A ⇒ B) ≤ ||A ⇒ B||M}.

That is, M is a model of T , i.e. M ∈ Mod(T ), means that for each A ⇒ B, a
degree to which A ⇒ B holds in M is higher than or at least equal to a degree
T (A ⇒ B) prescribed by T . Models of theories T have an interesting property.
Note first that an L∗-system is a system of fixpoints of an L∗-closure operator,
i.e. an operator C satisfying (13), (15), and S(A, B)∗ ≤ S(C(A), C(B)).

Theorem 18 ([A19]) A system S ⊆ LY is system of all models of some theory
T iff S is an L∗-closure system.

Further results on models of FAIs can be found in [A19].

Relationship to concept lattices with hedges In the ordinary case, several
issues in AIs are related to concept lattices. In our setting, FAIs correspond to
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particular concept lattice with hedges. Namely, consider arrow operators, cf.
Section 2.5, defined by

A↑(y) =
∧

x∈X

(
A(x)∗ → I(x, y)

)
, B↓(x) =

∧
y∈Y

(
B(y) → I(x, y)

)
,

the corresponding concept lattice B(X∗, Y, I), and the corresponding set

Int(X∗, Y, I) = {B | 〈B↓, B〉 ∈ B(X∗, Y, I)}

of intents. The following is an excerpt of a theorem from [A12] illustrating some
basic relationships (we will see more relationships later).

Theorem 19 ([A12]) For a data table 〈X, Y, I〉 with fuzzy attributes,

||A ⇒ B||〈X,Y,I〉 = ||A ⇒ B||Int(X∗,Y,I) = S(B, A↓↑).

3.2 Semantic entailment and non-redundant bases

We now turn our attention to the notions of semantic entailment, completeness
in data tables, non-redundant basis, etc.

Entailment and completeness in data A degree ||A ⇒ B||T to which
A ⇒ B semantically follows from a fuzzy set T of FAIs is defined by

||A ⇒ B||T = ||A ⇒ B||Mod(T ), (24)

i.e., ||A ⇒ B||T can be seen as a degree to which A ⇒ B is true in each model
of T . From now on in this section, we will assume that T is an ordinary set of
fuzzy attribute implications. A set T of attribute implications is called complete
(in 〈X,Y, I〉) if

||A ⇒ B||T = ||A ⇒ B||〈X,Y,I〉

for each FAI A ⇒ B, i.e., a degree to which A ⇒ B is true in 〈X, Y, I〉 equals
the degree to which A ⇒ B follows from T . If T is complete and no proper
subset of T is complete, then T is called a non-redundant basis (of 〈X, Y, I〉).

The following observation is interesting. Call T 1-complete in 〈X,Y, I〉 pro-
vided ||A ⇒ B||T = 1 iff ||A ⇒ B||〈X,Y,I〉 = 1 for each A ⇒ B. Clearly, if T is
complete then it is also 1-complete. Surprisingly, we have also

Theorem 20 ([B20]) T is 1-complete in 〈X, Y, I〉 iff T is complete in 〈X, Y, I〉.

The following assertion shows that the models of a complete set of fuzzy at-
tribute implications are exactly the intents of the corresponding concept lattice.

Theorem 21 ([A9]) T is complete in 〈X, Y, I〉 iff Mod(T ) = Int(X∗, Y, I).
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Guigues-Duquenne bases We now focus on the so-called Guigues-Duquenne
basis, i.e. a non-redundant basis based on the notion of a pseudo-intent which
was introduced in the ordinary setting by Guigues and Duquenne [C17], [C25].
As we will see, the situation is somewhat different from what we know from the
ordinary case. We start by the notion of a system of pseudo-intents.

Given 〈X, Y, I〉, P ⊆ LY (system of fuzzy sets of attributes) is called a system
of pseudo-intents of 〈X,Y, I〉 if for each P ∈ LY we have:

P ∈ P iff P 6= P ↓↑ and ||Q ⇒ Q↓↑||P = 1 for each Q ∈ P with Q 6= P .
It is easily seen that if ∗ is globalization, the above condition simplifies to

P ∈ P iff P 6= P ↓↑ and Q↓↑ ⊆ P for each Q ∈ P with Q ⊂ P .

In addition, in case of finite L, for each data table with finite set of attributes
there is exactly one system of pseudo-intents which can be described recursively
the same way as in the ordinary case [C17], [C25]:

Theorem 22 ([A13]) Let L be finite, ∗ be globalization. For each 〈X, Y, I〉
there is a unique system of pseudo-intents P of 〈X, Y, I〉 and

P = {P ∈ LY | P 6= P ↓↑ and Q↓↑ ⊆ P holds for each Q ∈ P such that Q ⊂ P}.

Neither the uniqueness of P nor the existence of P can be guaranteed in general,
see [A13]. For L = 2, the system of pseudointents described by Theorem 22
coincides with the ordinary one. The next theorem shows the role of systems of
pseudointents.

Theorem 23 ([A13]) Let P be a system of pseudointents of 〈X, Y, I〉. Then
T = {P ⇒ P ↓↑|P ∈ P} is a non-redundant basis of 〈X, Y, I〉 (so-called Guigues-
Duquenne basis).

Non-redundancy of T does not ensure that T is minimal in terms of its size.
The following theorem shows a generalization of a well-known result saying that
Guigues-Duquenne basis is minimal in terms of its size.

Theorem 24 ([A13]) Let L be finite, ∗ be globalization, T be the Guigues-
Duquenne basis of 〈X, Y, I〉. If T ′ is complete in 〈X, Y, I〉 then |T | ≤ |T ′|.

For hedges other than globalization we can have several systems of pseudointents.
The systems of pseudointents may have different numbers of elements, see [A13].

Remark 11 (1) The first study on FAIs is S. Pollandt’s [C42]. Pollandt uses
the same notion of a FAI, i.e. A ⇒ B where A, B are fuzzy sets, and obtains
several results. Pollandt’s notion of validity is a special case of ours, namely the
one for ∗ being identity. On the other hand, the notion of a pseudo-intent in
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[C42] corresponds to ∗ being globalization. That is why Pollandt did not get a
proper generalization of results leading to Guigues-Duquenne basis.

(2) [B22] and [A12] contain some reduction theorems concerning relationships
of FAIs in 〈X, Y, I〉 vs. ordinary AIs in some tables with binary attributes
obtained from 〈X, Y, I〉.

3.3 Fuzzy attribute logic

In this section we present two kinds of logics for reasoning with FAIs including
their completeness theorems. The logics are inspired by so-called Armstong
axioms [C2], well known from the theory of database systems [C37]. Throughout
this section, we assume that L is a finite residuated lattice (for infinite case, see
[B33]).

Ordinary-style fuzzy attribute logic The logic has the following deduction
rules:

(Ax)
A∪B⇒A

, (Cut) A⇒B, B∪C⇒D
A∪C⇒D

, (Mul) A⇒B
c∗⊗A⇒c∗⊗B

,

for each A, B, C,D ∈ LY , and c ∈ L. Note that the first system of rules was
introduced in [B20]. The present one, introduced in [A15], has the following
advantage: With A, B, C,D being ordinary sets, (Ax) and (Cut) are well-known
deduction rules from the ordinary case for which it is known that they are
complete (w.r.t. both database semantics an the semantics given by tables with
binary attributes). (Mul) is a new rule in a fuzzy setting (rule of multiplication).
Therefore, the above system results by taking ordinary rules (and replacing sets
by fuzzy sets in these rules) and adding (Mul) as a single “fuzzy rule”. It can
be easily seen that if we take any system of rules which is complete in the
ordinary case and replace ordinary sets by fuzzy sets in these rules, then adding
(Mul), we get a system of deduction rules which is equivalent the the above rules
(Ax)–(Mul).

in a usual way, we can now introduce: a FAI A ⇒ B is provable from a set T
of FAIs (denoted by T ` A ⇒ B) iff there is a proof of A ⇒ B, i.e. a sequence
ϕ1, . . . , ϕn of FAIs such that ϕn is A ⇒ B and for each ϕi, either ϕi ∈ T or
ϕi is inferred (in one step) from some of the preceding formulas using some of
deduction rules (Ax)–(Mul). Writing T |= A ⇒ B instead of ||A ⇒ B||T = 1
(i.e., A ⇒ B semantically follows from T in degree 1), we can get the ordinary
completeness:

Theorem 25 ([A15]) For any set T of FAIs and a FAI A ⇒ B we have

T |= A ⇒ B iff T ` A ⇒ B.
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Pavelka-style fuzzy attribute logic The above completeness theorem does
not capture degrees of entailment. We now present a so-called Pavelka-style
logic [C21], [C26], [C38], [C40], and refer to [A21] for details.

Our logic uses the following deduction rules:

(Ax) 〈A∪B⇒A, 1〉 , (Cut) 〈A⇒B, a〉,〈B∪C⇒D, b〉
〈A∪C⇒D, a∗⊗b〉 ,

(Mul) 〈A⇒B, a〉
〈c∗⊗A⇒c∗⊗B, a〉 , (Sh) 〈A⇒B, a〉

〈A⇒C, S(C,a⊗B)〉 ,

for each A, B, C,D ∈ LY , and a, b, c ∈ L; S(· · ·) denotes a subsethood degree,
see Section 1.3. Note that, in fact, (Sh) is a parameterized rule; we have one rule
(ShC) for each C. Note that, e.g., (Cut) can be read as follows: having inferred
a FAI A ⇒ B in degree (at least) a ∈ L, and a FAI B ∪ C ⇒ D in degree at
least b, we can infer A ∪ C ⇒ D in degree a∗ ⊗ b. As usual in Pavelka-style
logic, a proof of 〈A ⇒ B, a〉 is a sequence of pairs 〈ϕ1, a1〉, . . . , 〈ϕn, an〉 (ϕi a
FAI, ai ∈ L) such that 〈A ⇒ B, a〉 = 〈ϕn, an〉 and for each i = 1, . . . , n we have
ai = T (ϕi) or 〈ϕi, ai〉 is obtained by some rule (Ax)–(Sh) from some 〈ϕj, aj〉’s
(j < i). A degree |A ⇒ B|T of provability of a FAI A ⇒ B from T is defined by

|A ⇒ B|T =
∨
{a | . . . , 〈A ⇒ B, a〉 is a proof from T}.

Then we have the following Pavelka-style completeness:

Theorem 26 ([A21]) For each fuzzy set T of FAIs and a FAI A ⇒ B we have

||A ⇒ B||T = |A ⇒ B|T .

Reducing Pavelka-style completeness to ordinary completeness It is
interesting to note that due to some special properties, we can get Pavelka-style
completeness using a “technical trick”. Our approach is conceptually the same
as the way Hájek proved completeness of Rational Pavelka logic in [C26].

For a fuzzy set T of FAIs and for A ⇒ B we define a degree |A ⇒ B|T ∈ L
to which A ⇒ B is provable from T (there is a clash with the above definition
but it will turn out that the definitions coincide) by

|A ⇒ B|T =
∨
{c ∈ L | c(T ) ` A ⇒ c⊗B},

where c(T ) is an ordinary set of FAIs defined by

c(T ) = {A ⇒ T (A ⇒ B)⊗B |A, B ∈ LY and T (A ⇒ B)⊗B 6= ∅}.

Then we have (a consequence of Theorem 25 and some further facts):

Theorem 27 ([A15]) For each fuzzy set T of FAIs and a FAI A ⇒ B we have

||A ⇒ B||T = |A ⇒ B|T .
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3.4 Computation of non-redundant bases

This section presents selected results related to computation of non-redundant
bases. Throughout this section, we assume that L is finite.

∗ being globalization If ∗ is globalization, there is a unique system P of
pseudointents for 〈X, Y, I〉, see Theorem 22. An algorithm for computing P ,
extending Ganter’s algorithm for computing ordinary pseudointents [C17], can
be obtained as follows [A9]: For Z ∈ LY put

ZT ∗ = Z ∪
⋃
{B ⊗ S(A, Z)∗ |A ⇒ B ∈ T and A 6= Z},

ZT ∗0 = Z,

ZT ∗n = (ZT ∗n−1)T ∗ , for n ≥ 1,

and define an operator clT ∗ on L-sets in Y by

clT ∗(Z) =
⋃∞

n=0 ZT ∗n .

Theorem 28 ([A9]) clT ∗ is a fuzzy closure operator, and

{clT ∗(Z) |Z ∈ LY } = P ∪ Int(X∗, Y, I).

Therefore, pseudo-intents can be obtained using Theorem 28 and the above
algorithm for computing fixpoints of fuzzy closure operators.

Arbitrary ∗ If ∗ is an arbitrary hedge, systems of pseudo-intents for 〈X, Y, I〉
can be computed using algorithms for generating maximal independent sets in
graphs. Namely, systems of pseudo-intents can be identified with particular
maximal independent sets, for details see [A18]: For 〈X, Y, I〉 define a set V of
fuzzy sets of attributes by

V = {P ∈ LY |P 6= P ↓↑}. (25)

If V 6= ∅, define a binary relation E on V by

E = {〈P, Q〉∈ V |P 6= Q and ||Q ⇒ Q↓↑||P 6= 1}. (26)

Consider the graph G = 〈V, E ∪ E−1〉. For any Q ∈ V and P ⊆ V define
the following subsets of V : Pred(Q) = {P ∈ V | 〈P, Q〉 ∈ E}, and Pred(P) =⋃

Q∈P Pred(Q).

Theorem 29 ([A18]) Let L be finite, ∗ be any hedge, 〈X,Y, I〉 be a data table
with fuzzy attributes, P ⊆ LY , V and E be defined by (25) and (26), respectively.
Then the following statements are equivalent.

31



(i) P is a system of pseudo-intents;

(ii) V − P = Pred(P);

(iii) P is a maximal independent set in G such that V − P = Pred(P).

Theorem 29 gives a way to compute systems of pseudo-intents. One needs
to find all maximal independent sets in G (algorithms exist for this problem,
e.g. [C30]) and check which of them satisfy the additional condition V − P =
Pred(P). Further details can be found in [A18].

Further way to get non-redundant bases [A19] contains another way to
obtain non-redundant bases for general ∗: First, one computes a set T of FAIs
which is complete for a given 〈X, Y, I〉 (in a way similar to computing pseudo-
intents when ∗ is globalization). Second, one removes FAIs from T until it
becomes non-redundant. This is based on checking whether a FAI A ⇒ B
follows in degree 1 from a set T of FAIs which can be done by checking whether
B is contained in the least model M of T −{A ⇒ B} which contains A. M can
be computed as a closure under a particular fuzzy closure operator, see [A19].

3.5 Functional dependencies in tables over domains with
similarity relations

In this section, we briefly describe a “database interpretation” of FAIs. It turns
out that this interpretation has the same notion of semantic entailment. As
a result, the logics presented in Section 3.3 give us completeness theorem for
the database interpretation. We refer to [A16] and [A17] for details. Following
common usage, we also call a FAI A ⇒ B a (fuzzy) functional dependence (FFD)
in this section.

A data table over domains with similarity relations is a tuple
D = 〈X, Y, {〈Dy,≈y〉 | y ∈ Y }, T 〉 where

• X is a non-empty set (of objects, table items),

• Y is a non-empty finite set (of attributes),

• for each y ∈ Y , Dy is a non-empty set (of values of attribute y) and ≈y

is a binary fuzzy relation which is reflexive and symmetric (we call it a
similarity),

• T is a mapping assigning to each x ∈ X and y ∈ Y a value T (x, y) ∈ Dy

(value of attribute y on object x, denoted also x[y]).

Remark 12 Consider L = {0, 1} (ordinary case). If each ≈y is an equality (i.e.
a ≈y b = 1 iff a = b), then D can be identified with what is called a relation on
relation scheme Y with domains Dy (y ∈ Y ) [C37], i.e. one of the basic concepts
of Codd’s relational model of data.
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D can be seen as a table with rows and columns corresponding to x ∈ X and
y ∈ Y , respectively, and with table entries containing values T (x, y) ∈ Dy.
Moreover, each domain Dy is equipped with an additional information about
similarity of elements from Dy. We now introduce a condition for a functional
dependence A ⇒ B to be true in D which says basically the following: “for
any two objects x1, x2 ∈ X: if x1 and x2 have similar values on attributes from
A then x1 and x2 have similar values on attributes from B”. Define first for
a given D, objects x1, x2 ∈ X, and a fuzzy set C ∈ LY of attributes a degree
x1(C) ≈ x2(C) to which x1 and x2 have similar values on attributes from C
(agree on attributes from C) by

x1(C) ≈ x2(C) =
∧

y∈Y

(
C(y) → (x1[y] ≈y x2[y])

)
.

That is, x1(C) ≈ x2(C) is truth degree of “for each attribute y ∈ Y : if y belongs
to C then the value x1[y] of x1 on y is similar to the value x2[y] of x2 on y”, which
can be seen as a degree to which x1 and x2 have similar values on attributes
from C. Then, a degree ||A ⇒ B||D to which A ⇒ B is true in D is defined by

||A ⇒ B||D =
∧

x1,x2∈X

(
(x1(A) ≈ x2(A))∗ → (x1(B) ≈ x2(B))

)
.

Remark 13 (1) L = 2, the above definition gives the well-known notion of a
functional dependence being true in a relation over relation scheme Y .

(2) A(y) ∈ L and B(y) ∈ L can be seen as thresholds, as in case of FAIs, cf.
Remark 10.

We now have two semantics for FAIs: one given by data tables with fuzzy
attributes, the second one given by tables over domains with similarities. As
it will turn out, both of them have the same notion of semantic entailment.
For a fuzzy set T of FFD, the set ModFD(T ) of all models of T is defined by
ModFD(T ) = {D | for each A, B ∈ LY : T (A ⇒ B) ≤ ||A ⇒ B||D}, where
D stands for an arbitrary data table over domains with similarities. A degree
||A ⇒ B||FD

T ∈ L to which A ⇒ B semantically follows from a fuzzy set T of
FFDs is defined by ||A ⇒ B||FD

T =
∧
D∈ModFD(T ) ||A ⇒ B||D. Denoting now

||A ⇒ B||T , see (24), by ||A ⇒ B||AI
T , one can prove the following theorem.

Theorem 30 ([A16]) For each fuzzy set T of FAIs and any FAI A ⇒ B we
have

||A ⇒ B||FD
T = ||A ⇒ B||AI

T .

Remark 14 Various notions of FFDs have been studied. Our approach seems
to be quite general and our results go beyond the results which can be found in
the literature. See [B36] for a comparison. Note that [B30] extends the tables
over domains with similarities by ranks assigned to table rows. This enables us
to consider a table as an answer to a similarity-based query.
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4 Further directions

This section presents a brief overview of some of further topics including topics
for future research.

Formal concept analysis Algorithms for FCA: Development of efficient al-
gorithms was not our main focus. Up to now, we only focused on presenting
computational feasibility of FCA of data with fuzzy attributes. A detailed de-
sign and study of algorithms for FCA is a topic for future research. Other
approachesto FCA: Recently, there have been proposed several new approaches
to FCA of data with fuzzy attributes, see e.g. [C20], [C16], [C34]. The mutual
relationships between these approaches as well as their theoretical and compu-
tational tractability needs to be explored. Further studies of structures behind
FCA: We presented some results on the mathematical structures behind FCA
of data with fuzzy attributes. These structures are of intest in fuzzy set theory
per se (e.g., fuzzy closure operators and systems, fuzzy order). A further study
of these structures is an interesting problem.

Relational factor analysis In relational factor analysis (RFA, the term was
coined by us and is thus to be considered tentative), the aim is to decom-
pose a given objects×attributes fuzzy relation into a relational product of an
objects×factors fuzzy relation and a factors×attributes fuzzy relation with the
number of factors possibly less than the number of attributes. RFA generalizes
Boolean factor analysis (BFA), on which there are many papers in the literature,
and is an example of a non-linear factor analysis. In [A31], we demonstrated
that concept lattices are of crucial importance for RFA. Namely, one can take
formal concepts as factors in the decomposition. This is an optimal approach,
see [A31] for BFA, and analogous results hold true for RFA in general. Note
that taking formal concept as factors was proposed by Keprt and Snášel.

Extension of Codd’s relational model of data Although there are many
papers on the extension of Codd’s relational model of data in the literature, this
topic is not properly developed. We already mentioned functional dependencies
in this extension. A proper use of fuzzy logic is expected to lead to further
development of the extension. Note that according to [C1], foundations of un-
certainty and imprecision in databases are considered an important research
topic. For instance, in [B30], we showed that the topk query, on which there has
been an intensive research recently, see e.g. [C36], is a relational query in the
extension by similarities and ranks. It seems that the extension of Codd’s model
provides appropriate foundations for the ongoing research on ranked queries in
the database community.
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13. Bělohlávek R., Funioková T.: Similarity and fuzzy tolerance spaces. Journal of Logic
and Computation Vol. 14, No. 6(2004), 828–855. [Oxford University Press, ISSN
0955-792X]
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