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Abstract
The present thesis is devoted to geometric aspects of spectral theory of differ-
ential operators with surface interactions. We consider three types of opera-
tors with surface interactions: the Robin Laplacian, the Dirac operator with
the infinite mass boundary condition, and the Schrödinger operator with a
singular interaction supported on a surface. For the Robin Laplacian we ob-
tain spectral isoperimetric inequalities for low eigenvalues in various settings.
Furthermore, we derive geometric bounds on the principal eigenvalue of the
Dirac operator with the infinite mass boundary condition. Finally, for the
Schrödinger operator with a singular interaction we prove spectral isoperi-
metric inequalities for the lowest eigenvalue and in several settings obtain
spectral asymptotics, in which the shape of the interaction support manifests.
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1 Introduction
The study of connections between spectral theory and geometry constitutes
an important area of mathematics called spectral geometry. Such connections
are of interest from a purely mathematical point of view and also due to
their applications in various branches of physics, since these connections yield
new information about properties of differential equations describing physical
systems.

In the present thesis, we discuss shape optimization of the eigenvalues
and manifestation of the geometry in their asymptotic behaviour for differ-
ential operators describing physical systems with surface interactions. We
mainly consider three types of differential operators with surface interactions:
the Robin Laplacian, the Dirac operator with the infinite mass boundary con-
dition, and the Schrödinger operator with a singular interaction supported
on a surface. Spectral problems for these operators have elegant formula-
tions and are of interest in pure mathematics. They also find applications
in the description of physical systems. The investigation of the spectra of
the Robin Laplacian is partially motivated by applications in elasticity theory
and superconductivity. The Dirac operator with the infinite mass boundary
condition appears in the description of graphene quantum dots. Finally, sin-
gular interactions supported on a surface serve as idealized models of regular
potentials localized in the vicinity of this surface, which often arise in meso-
scopic physics. Further, we briefly outline the obtained results and provide
the historical context. More detailed discussion of the results is presented in
Sections 2-4 below.

The Robin Laplacian

In our analysis of the Robin Laplacian we focus on optimization of the low
lying Robin eigenvalues with respect to the shape of the domain. We prove
spectral isoperimetric inequalities for Robin eigenvalues with negative bound-
ary parameter in several related settings. In the papers [KL18, KL20] we ob-
tain results on optimization of the lowest Robin eigenvalue in the exterior of a
bounded set in all space dimensions. In the exterior of a convex planar set, we
prove in [EL22] a spectral isoperimetric inequality for the second eigenvalue.
We also obtain results on the optimization of the lowest Robin eigenvalue in
unbounded three-dimensional cones and on two-dimensional simply-connected
manifolds [KhL22]. Furthermore, we address in [KaL22] optimization of the
lowest magnetic Robin eigenvalue in two dimensions for the moderate intensity
of the homogeneous magnetic field. Besides the Robin Laplacian we also deal
with closely related Robin bi-Laplacian. We consider in [L23] optimization
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of the lowest eigenvalue of perturbed Robin bi-Laplacian in a planar exterior
domain. All the analysed settings have not been considered in the literature
before in light of eigenvalue optimization.

The study of spectral isoperimetric inequalities goes back to the mono-
graph The Theory of Sound by Lord Rayleigh [R]. First rigorous results for
the lowest eigenvalue of the Dirichlet Laplacian are proved a century ago
by Faber [F23] and Krahn [K24]. Spectral isoperimetric inequalities for the
lowest Robin eigenvalue are obtained much later: for the positive boundary
parameter by Bossel [B86] and Daners [D06] and for the negative boundary
parameter by Antunes, Freitas, and Krejčiřík [AFK17] and by Bucur, Fer-
one, Nitsch, and Trombetti [BFNT18]. Related results are proven by many
authors, some of which are reviewed in Section 2.

Dirac operator with the infinite mass boundary condition

We consider in the papers [ABLO21, LO19] the two-dimensional massless
Dirac operator on a bounded domain with the infinite mass boundary condi-
tion. Our main results concern sharp upper bounds on the smallest positive
eigenvalue of this operator. The upper bound is expressed through the small-
est positive eigenvalue of the disk, the area of the domain, its perimeter, and
the in-radius. The bound is sharp in the sense that for the disk it becomes
an inequality. In order to obtain an upper bound in [ABLO21] we derived
a new variational principle of independent interest for the Dirac operator,
which transforms the two-component spectral problem for this operator into
one-component spectral problem for the Laplacian with oblique derivative
boundary condition and the spectral parameter enters also in the boundary
condition. Moreover, we provide a numerical evidence, which shows that the
smallest positive eigenvalue of this Dirac operator is minimized by the disk
among all simply-connected domains of fixed area. Further details on these
results are provided in Section 3.

The two-dimensional Dirac operator with the infinite mass boundary con-
dition was rigorously introduced by Benguria, Fournais, Stockmeyer, and Van
Den Bosch in [BFSV17a] in connection with graphene quantum dots. The
same group of authors obtained in [BFSV17b] a lower bound on the smallest
positive eigenvalue of this operator in terms of the area of the domain. Op-
erators of this kind were also investigated earlier on manifolds with a purely
geometric motivation; see e.g. [HMZ01, R06].
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Schrödinger operator with a singular interaction

In the series of papers [BEL14, EL17, LO16] we analysed the Schrödinger
operator with an attractive δ-interaction supported on an unbounded con-
ical surface. In [BEL14] we proved that the discrete spectrum below the
threshold of the essential spectrum induced by the circular conical surface in
three dimensions is infinite. We computed the respective spectral asymptotics
in [LO16] and showed that the eigenvalues are non-decreasing functions of the
aperture of the conical surface. Moreover, we proved in [LO16] that in space
dimensions d ≥ 4 the circular conical surface does not induce bound states
and the spectrum is purely continuous. In [EL17] we considered optimization
of the lowest eigenvalue induced by the conical surface in three dimensions
of generic cross-section. Our analysis was partially inspired by the results
on the discrete spectrum for the Dirichlet Laplacian on a conical layer by
Duclos, Exner, and Krejčiřík [DEK01], Exner and Tater [ET10] and Dauge,
Ourmières-Bonafos, and Raymond [DOR15].

In [EKL18] we analysed the discrete spectrum induced by the attractive
δ-interaction supported on a locally and weakly deformed plane in three di-
mensions. We proved that for a sufficiently weak deformation there is a unique
simple eigenvalue below the threshold of the essential spectrum and obtained
its asymptotics in terms of the profile of the deformation. This analysis was
motivated by partial results [EK03] due to Exner and Kondej on the existence
of bound states below the threshold of the essential spectrum induced by an
attractive δ-interaction supported on an asymptotically flat surface in three
dimensions. It remains an open problem whether any such surface induces a
non-empty discrete spectrum for any strength of the attractive δ-interaction.
Our results in [EKL18] give some insights on this open problem.

In the series of papers [EL21, L19, L21] we analysed optimization of the
lowest eigenvalue induced by attractive (singular) interactions in two dimen-
sions in several related settings. In particular, in [L19] we considered opti-
mization of the lowest eigenvalue induced by δ-interaction supported on an
open arc of fixed length with two endpoints. Further, in [L21] we obtained
an optimization result for the lowest eigenvalue induced by an attractive δ′-
interaction supported on a contour of fixed length. Finally, in [EL21] we
proved isoperimetric inequalities for the lowest eigenvalue in the model of soft
quantum ring, namely, a regular potential supported in the curved strip in
the plane. These considerations are inspired by the result in [EHL06] due to
Exner, Harrell, and Loss on the optimization of the lowest eigenvalue induced
by the δ-interaction supported on a contour in two dimensions.

In the paper [BEHL20] we considered the Landau Hamiltonian perturbed
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by the δ-interaction supported on a curve. Our main result in this setting
concerns the asymptotics of the accumulation of the eigenvalues at the Landau
levels. This spectral asymptotics is expressed in terms of the intensity of the
magnetic field and the logarithmic capacity of the interaction support. This
result is a counterpart for δ-interactions of the result by Raikov [R90] on
regular potentials and by Pushnitski and Rozenblum [PR07] on the magnetic
Dirichlet Laplacian on an exterior domain.

2 Optimization of the Robin eigenvalues
The Robin eigenvalue problem for the Laplace operator is considered in a vast
number of publications during the last century. Besides purely mathematical
interest explained by elegance of this problem, there is a classical application
of the Robin Laplacian in physics to the elasticity theory in the description of
the elastically supported membrane. Another application the Robin Laplacian
finds in the theory of superconductivity [GS07].

For a bounded domain Ω ⊂ Rd, d ≥ 2, with sufficiently smooth boundary
∂Ω, we consider the spectral problem{

−∆u = λu, in Ω,

∂νu+ βu = 0, on ∂Ω,
(2.1)

where ∂νu denotes the normal derivative of u with the normal pointing out-
wards of Ω and β ∈ R is called the boundary parameter. The problem (2.1)
can be interpreted as a spectral problem for a rigorously defined semibounded
self-adjoint operator

HΩ
βu := −∆u,

domHΩ
β :=

{
u ∈ H1(Ω): ∆u ∈ L2(Ω), ∂νu+ βu = 0 on ∂Ω

}
,

(2.2)

acting in the Hilbert space L2(Ω). The spectrum of HΩ
β is purely discrete

and we denote by {λβk(Ω)}k≥1 the eigenvalues of this operator enumerated in
the non-decreasing order and repeated with multiplicities taken into account.
The sign of λβ1 (Ω) is the same as of the parameter β and λ0

1(Ω) = 0. We also
include the case β =∞ into the discussion which formally corresponds to the
Dirichlet boundary condition.
The case β =∞ (Dirichlet). In the case of the Dirichlet boundary condition
it is proved by Faber and Krahn a century ago that the ball is the minimizer
of the lowest eigenvalue among domains of the same volume [F23, K24]. This
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statement was conjectured Lord Rayleigh in his famous monograph The The-
ory of Sound [R]. The second Dirichlet eigenvalue is minimized by the union
of two disjoint identical balls among domains of the same volume [K26].
The case β > 0. It was proved by Bossel [B86] in two dimensions and then
by Daners [D06] in higher dimensions that for β > 0 the eigenvalue λβ1 (Ω) is
minimized by the ball among all domains of the same volume. The second
eigenvalue λβ2 (Ω) is shown in [K09] to be minimized under fixed volume con-
straint by the union of two disjoint balls of the same radius. In view of these
results the understanding of the optimization for the lowest two eigenvalues
for β > 0 can be regarded as quite complete. The techniques of the proofs are
significantly different from the one used in the case of the Dirichlet boundary
condition.
The case β < 0. It was conjectured by Bareket [B77] that for β < 0 under
the fixed volume constraint the ball is the maximizer of the lowest Robin
eigenvalue based on the local optimality of the ball, but it was later shown
by Freitas and Krejčiřík [FK15] that it is not true, because the spherical
shell of the same volume as the ball gives larger lowest eigenvalue for β < 0
with sufficiently large absolute value. However, under the fixed perimeter
constraint the disk is proved by Antunes, Freitas, and Krejčiřík [AFK17] to
be the maximizer of λβ1 (Ω). It is also conjectured [AFK17, Conj. 2] that
under the fixed area constraint the disk is the maximizer of λβ1 (Ω) in the
class of simply connected domains. In higher space dimensions the ball is
proved in [BFNT18] to be the maximizer of λβ1 (Ω) under fixed area of the
boundary in the class of convex domains and it is conjectured in [AFK17,
Conj. 4] that the convexity assumption can be dropped. The results on the
optimization for the second eigenvalue λβ2 (Ω) for β < 0 are less complete. It
is proved in [FL20, FL21] that λβ2 (Ω) is maximized by the ball under fixed
volume constraint provided that β ∈ [−d+1

d R−1, 0], where R is the radius of
the optimal ball.

We address the optimization of the lowest Robin eigenvalue and in some
cases of the second Robin eigenvalue for the negative boundary parameter
in several modified settings. First, we consider the optimization of the low
Robin eigenvalues in the complement of a bounded open set. Second, we study
the optimization of the lowest Robin eigenvalue on two-dimensional simply-
connected Riemannian manifolds with boundary and in three-dimensional un-
bounded Euclidean cones. Finally, we modify the optimization problem on a
bounded Euclidean domain by adding a homogeneous magnetic field.

Besides the Laplace operator we also deal with the bi-Laplacian. In gen-
eral, the eigenvalue optimization for the bi-Laplacian is more complicated
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than for the Laplacian. Nadirashvili proved in [N95] the analogue of the
Faber-Krahn inequality for the Dirichlet bi-Laplacian (describing the clamped
plate) in dimension d = 2. Ashbaugh and Benguria [AB95] obtained such
an isoperimetric inequality in dimension d = 3. The same question in di-
mensions d ≥ 4 remains still open. An analogue of the Szegő-Weinberger
inequality for the perturbed Neumann bi-Laplacian corresponding to a plate
under tension with free boundary was proved by Chasman in [C11]. Here, the
considered perturbation corresponding to tension is of lower order. The per-
turbed Robin bi-Laplacian in a bounded domain has been recently introduced
by Chasman and Langford [CL20] and in a more general form by Buoso and
Kennedy [BK22]. The spectral analysis of this operator is partially motivated
by application in mechanics to the study of vibrations of plates with elastic
response of the boundary. An isoperimetric inequality for the lowest eigen-
value of the perturbed Robin bi-Laplacian in a bounded domain remains an
open problem.

2.1 Exterior of a compact set ([KL18, KL20, EL22, L23])
In this series of papers we considered optimization of the low Robin eigenvalues
in the exterior of a compact set. Recall that Ω stands for a bounded open set
in Rd with sufficiently smooth boundary. We point out that Ω is not assumed
to be connected, but in this subsection we additionally assume that all the
connected components of Ω are simply connected. We denote the complement
of Ω by Ωext := Rd \ Ω. The domain Ωext is unbounded, but its boundary is
compact. We consider the Robin Laplacian on the exterior domain Ωext

HΩext

β u := −∆u,

domHΩext

β :=
{
u ∈ H1(Ωext) : ∆u ∈ H1(Ωext), ∂νu− βu = 0 on ∂Ω

}
,

where the change of sign in the boundary condition is related to the fact that
the outer normal vector for Ω is the inner normal vector for Ωext. It can
be easily shown that the operator HΩext

β is self-adjoint in the Hilbert space
L2(Ωext). One of the main differences from the bounded domain case is that
the essential spectrum of HΩext

β is not empty and coincides with the interval
[0,∞) for all β ∈ R. For β ≥ 0 there is no spectrum other than this essential
spectrum, while for β < 0 there can be finitely many negative eigenvalues. In
what follows we assume that β < 0 and denote by {λβk(Ωext)}k≥1 the negative
eigenvalues of HΩext

β enumerated in the non-decreasing order and counted with
the multiplicities. This sequence is extended up to an infinite one repeating
the value 0 infinitely many times. We are interested in the optimization of
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λβ1 (Ωext) and of λβ2 (Ωext) with respect to the variation of the shape of Ω under
various natural geometric constraints. The results are convenient to split into
the two-dimensional case and the higher dimensional case.
Two dimensions (d = 2). In this setting there is at least one negative eigen-
value for all β < 0. In the case that Ω is connected we prove in [KL18, KL20]
that λβ1 (Ωext) < 0 is maximized by the exterior of the disk under both con-
straints |Ω| = const and |∂Ω| = const. The situation becomes more involved
if Ω is not connected. We assume that Ω has N ≥ 2 connected components
and in this case we prove in [KL20] that

λβ1 (Ωext) ≤ λβ1 (Bext), for all β < 0,

where B ⊂ R2 is the disk satisfying |∂Ω|
N = |∂B|. We also show by constructing

a counterexample in [KL18] that in the last condition the number of connected
components can not be removed from the denominator.

For optimization of the second Robin eigenvalue we restrict the class of
two-dimensional exterior domains by complements of bounded convex planar
sets. We also denote by κ∂Ω ≥ 0 the curvature of the boundary ∂Ω of a
convex domain Ω. We prove in [EL22] that for a convex domain Ω ⊂ R2 the
inequality

λβ2 (Ωext) ≤ λβ2 (Bext), for all β < 0,

holds under the constraint maxκ∂Ω ≤ 1
R , where R is the radius of the disk

B. It remains an open question whether the same inequality holds under
fixed perimeter constraint. The advantage of this result on the optimization
of the second Robin eigenvalue in comparison with the results for a bounded
domain [FL20, FL21] is that it holds without any restrictions on the boundary
parameter.
Higher dimensions (d ≥ 3). In this setting it turns out that there exists a
critical boundary parameter β? = β?(Ω

ext) < 0 such λβ1 (Ωext) < 0 if, and
only if β < β?. For higher space dimensions we show by a counterexample
in [KL18] that under the constraint of fixed area of the boundary the exterior
of the ball can not be the maximizer for λβ1 (Ωext) for all β < 0 even in the
class of convex Ω’s. The domain Ω which plays the role of a counterexample
is constructed as the convex hull of two disjoint identical balls whose centers
are sufficiently far away from each other. Choosing the parameters so that
the area of the boundary of this convex hull Ω ⊂ Rd is the same as of the ball
B ⊂ Rd we show that λβ1 (Ωext) > λβ1 (Bext) for all β < 0 sufficiently large by
absolute value. This counterexample shows that in higher space dimensions
the optimization in the exterior of compact sets is significantly different from
the case of bounded domains where it is proved in [BFNT18] that fixed area
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of the boundary ensures optimality of the ball in the class of convex domains
and moreover this convexity assumption can be potentially removed as the
numerical evidence in [AFK17] shows.

The natural questions arises whether one can prove a spectral isoperimetric
inequality under a possibly different geometric constraint. We found such a
constraint which involves the mean curvature. For a bounded convex domain
Ω ⊂ Rd, d ≥ 3, we introduce the geometric functional

M(∂Ω) :=

∫
∂Ω

Md−1(x)dσ(x)

|∂Ω|
,

where M ≥ 0 is the mean curvature of ∂Ω. We prove that for a bounded
convex domain Ω ⊂ Rd, d ≥ 3, the following inequality

λβ1 (Ωext) ≤ λβ1 (Bext), for all β < 0,

where B ⊂ Rd is the ball satisfying M(∂Ω) = M(∂B). Moreover, a reverse
inequality holds between the critical boundary parameters for Ωext and Bext

under the same geometric constraint.
Now we pass to the discussion of the results on the bi-Laplacian. As it

was already mentioned, an isoperimetric inequality for the lowest eigenvalue
of the perturbed Robin bi-Laplacian in a bounded domain is an open problem.
Motivated by this open problem we considered an optimization of the lowest
eigenvalue of this operator in a complementary setting of an exterior domain.
Let the space dimension d = 2, the boundary parameter γ < 0, and the
tension parameter α ≥ 0 be fixed. We introduce the perturbed Robin bi-
Laplacian HΩext

α,γ as the unique self-adjoint operator in L2(Ωext) associated
with the closed, densely defined, symmetric and lower-semibounded quadratic
form

H2(Ωext) 3 u 7→ ‖∇∂1u‖2L2(Ωext;C2) + ‖∇∂2u‖2L2(Ωext;C2)

+ α‖∇u‖2L2(Ωext;C2) + γ‖u|∂Ω‖2L2(∂Ω).

We show that the essential spectrum of this operator coincides with the set
[0,∞) and that the negative discrete spectrum is non-empty. Denote by
λα,γ1 (Ωext) < 0 the lowest eigenvalue of HΩext

α,γ . Assume, in addition, that
Ω is convex and let κ∂Ω ≥ 0 be the curvature of its boundary. Let B be the
disk of the radius R > 0. Under the assumption α ≥ 1

R2 and the constraint
maxκ∂Ω ≤ 1

R we prove in [L23] that

λα,γ1 (Ωext) ≤ λα,γ1 (Bext),

where the equality is attained if, and only if, Ω and B are congruent.
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2.2 Unbounded cones ([KhL22])
In the previous subsection we discussed the optimization of low Robin eigen-
values for a class of unbounded domains with compact boundaries. In this
subsection we consider a special class of unbounded three-dimensional do-
mains with non-compact boundaries. Let m ⊂ S2 be a simply-connected
smooth open set in the unit sphere S2 ⊂ R3. We define the unbounded three-
dimensional cone with the cross-section m as

Λm :=
{
rm : r > 0

}
.

The Robin Laplacian HΛm

β on Λm is defined as in (2.2) with Ω replaced by
Λm. In the following we assume that β < 0 in order to have a non-trivial
spectral portrait. According to [P16] the essential spectrum of HΛm

β coincides
with the interval [−β2,∞) and provided that |m| < 2π the discrete spectrum
below the point −β2 is infinite. The asymptotics of these eigenvalues is com-
puted in [BPP18]. One of the motivations to consider Robin Laplacians on
unbounded cones stems from the fact that they appear in the asymptotic anal-
ysis of the Robin Laplacian on a bounded non-smooth domain with conical
points in the regime β → −∞.

We denote by λβ1 (Λm) < −β2 the lowest eigenvalue of the Robin Laplacian
on the cone Λm with the boundary parameter β < 0. In [KhL22] we proved
that

λβ1 (Λm) ≤ λβ1 (Λb) = −4π2β2

|∂b|2
, for allβ < 0,

where b ⊂ S2 is the spherical cap of the same perimeter as m and provided
that |m|, |b|, |∂m| < 2π.

Figure 2.1: An unbounded cone Λm ⊂ R3 with a general cross-section m ⊂ S2

and the circular cone Λb ⊂ R3
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2.3 2-Manifolds ([KhL22])
In [KhL22] we extended the technique of [AFK17] to a class of compact two-
dimensional Riemannian manifolds with boundary. In order to generalize the
spectral isoperimetric inequality to this more complicated geometric setting
we needed to impose a condition on the curvature.

Let (M, g) be a (C∞-)smooth compact two-dimensional, simply-connected
Riemannian manifold with C2-smooth boundary ∂M, equipped with a smooth
Riemannian metric g. Such a manifold M is diffeomorphic to the Euclidean
disk and, in particular, its Euler characteristic is equal to 1.

The Robin Laplacian HM
β on the manifold M is defined as in (2.2) with Ω

replaced by M and where ∆ should be understood as the Laplace-Beltrami
operator. The normal vector is well defined in the respective tangential space
for any boundary point of M and in this perspective the normal derivative
is just the scalar product with the metric taken into account of the normal
vector and the gradient in the tangential plane evaluated at boundary points.

As in the case of a bounded Euclidean domain, the spectrum of HM
β is

purely discrete and we denote by λβ1 (M) its lowest eigenvalue, the sign of
which coincides with the sign of β.

We would like to emphasize that only a few recent results on the optimiza-
tion of Robin eigenvalues are obtained in the setting of Riemannian manifolds.
In [S20], bounds on λβ1 (M) in the spirit of the Hersh inequality are proved for
compact Riemannian manifolds in any dimension. For positive Robin param-
eters, β > 0, a spectral isoperimetric inequality for λβ1 (M) in any dimension
has been proved very recently in [CGH21] under certain constraints on the
curvatures of both the manifold M and its boundary ∂M. However, the case
β < 0 was not covered by the previous papers.

Let KM : M → R denote the Gauss curvature of the manifold M. We
assume that there exists a constant K◦ ≥ 0 such that

sup
x∈M

KM(x) ≤ K◦.

For K◦ = 0, the manifold M is of Cartan-Hadamard type and in this case we
prove that

λβ1 (M) ≤ λβ1 (B), for all β < 0,

where B ⊂ R2 is the Euclidean disk having the same perimeter as M. For
K◦ > 0, we prove under the assumption |M| ≤ 2π

K◦
that

λβ1 (M) ≤ λβ1 (B◦), for all β < 0,
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where B◦ ⊂ 1√
K◦
S2 is the spherical cap in the sphere of radius R = 1√

K◦

having the same perimeter as M and satisfying |B◦| ≤ 2π
K◦

. These additional
upper bounds on the areas of M and B◦ can not be removed as a counterex-
ample shows. It remains an open question whether an improvement of these
results can be obtained in the case K◦ < 0.

2.4 Magnetic Robin eigenvalues ([KaL22])
In this subsection we address the optimization of the lowest magnetic Robin
eigenvalue in two dimensions for the negative boundary parameter. The mag-
netic field is chosen to be homogeneous.

Let b ∈ R+ denote the intensity of the homogeneous magnetic field and
let us introduce the vector potential

A(x) =
1

2
(−x2, x1)>.

The magnetic Robin Laplacian on a bounded sufficiently smooth domain Ω ⊂
R2 is defined as

HΩ
β,bu := −(∇− ibA)2u,

domHΩ
β,b :=

{
u ∈ H2(Ω): ν · (∇− ibA)u+ βu = 0 on ∂Ω

}
.

The special case β = 0 corresponds to the magnetic Neumann boundary con-
dition while the case β = ∞ formally corresponds to the Dirichlet boundary
condition. We denote by λβ,b1 (Ω) the lowest eigenvalue of HΩ

β,b. It is proved
by Erdős in [E96] that the lowest magnetic Dirichlet eigenvalue λ∞,b1 (Ω) is
minimized by the disk among domains of fixed area. The lowest magnetic
Neumann eigenvalue λ0,b

1 (Ω) is strictly positive and depends on the shape of
Ω. Unlike in the non-magnetic case, its optimization is a meaningful problem.
It is conjectured by Fournais and Helffer in [FH19] that the lowest magnetic
Neumann eigenvalue is maximized by the disk among simply-connected do-
mains of fixed area. This conjecture is substantiated in [FH19] by the analysis
of the asymptotic regimes of small and large b.

The optimization of the lowest magnetic Robin eigenvalue has not been
considered in the literature before. Intuitively, the case of a positive boundary
parameter should be close to the Neumann case for small β and close to the
Dirichlet case for large β. In [KaL22] we addressed the case of a negative
boundary parameter and obtained a reverse Faber-Krahn-type inequality in
this setting. Recall that a domain Ω ⊂ R2 is called centrally symmetric if it is
invariant under the mapping J : R2 → R2, Jx := −x. A typical example of a
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convex centrally symmetric domain is an ellipse. Let the boundary parameter
β be negative. Let Ω ⊂ R2 be a bounded simply-connected domain of the
same perimeter as the disk B ⊂ R2 and which is either convex and centrally
symmetric or contained in B upon a suitable translation. Assume that the
intensity of the magnetic field satisfies the bound

0 < b < min{R−2, 4
√
−βR−3/2}, (2.3)

where R > 0 is the radius of the disk B. Under all these assumptions the
lowest magnetic Robin eigenvalue λβ,b1 (B) is negative and the inequality

λβ,b1 (Ω) < λβ,b1 (B),

holds for Ω � B.
In fact, we prove a slightly stronger result. The condition (2.3) on b ensures

that the lowest magnetic Robin eigenvalue on the disk B is negative and the
respective eigenfunction is a radial function. We can instead assume that
b > 0 is such that λβ,b1 (B) < 0 and that the respective eigenfunction is radial.
Moreover, the geometric assumptions on the domain Ω can be weakened.
In [KaL22] we introduce on Ω and B, having the same perimeter, the distance
to the boundary functions ρ∂Ω : Ω → R+ and ρ∂B : B → R+. We are able
to replace the above geometric assumption on Ω by a subordinacy condition
saying that there is a point x0 ∈ R2 such that for t ∈ (0, ri) (ri is the in-radius
of Ω) the moment of inertia of the curve {x ∈ Ω: ρ∂Ω(x) = t} with respect to
x0 is not greater than that of the curve {x ∈ B : ρ∂B(x) = t} with respect to
the center of B. This subordinacy condition is satisfied by a convex centrally
symmetric Ω and for Ω contained in B upon a translation. The subordinacy
condition is rather generic and it presents an open problem whether there are
simply-connected domains that violate this condition.

3 Spectral gap for graphene quantum dots
The Dirac operator defined on a bounded domain of the Euclidean space R2

attracted a lot of attention in the recent few years. The study of this operator
is motivated by the properties of low energy charge carriers in graphene. In the
definition of this operator one imposes a general local quantum dot boundary
condition, which covers the particular boundary conditions commonly used
in the physics literature [AB08]: the so-called zigzag, armchair, and infinite
mass boundary conditions. In the following we will focus on the infinite mass
boundary condition.
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Before going any further, let us rigorously introduce the Dirac operator on
a bounded planar domain with infinite mass boundary condition. Let Ω ⊂ R2

be a bounded sufficiently smooth simply-connected domain with the outer
unit normal vector ν = (ν1, ν2)>. Recall that the self-adjoint 2 × 2 Pauli
matrices are given by

σ1 :=

(
0 1
1 0

)
and σ2 :=

(
0 −i
i 0

)
.

For the convenience we introduce the collection of matrices σ := (σ1, σ2) and
define the product σ · ∇ = σ1∂1 + σ2∂2. Now the Dirac operator on Ω with
the infinite mass boundary condition is defined in the Hilbert space L2(Ω;C2)
as

DΩu := −iσ · ∇u,
domDΩ :=

{
u = (u1, u2) ∈ H1(Ω;C2) : u2 = i(ν1 + iν2)u1 on ∂Ω

}
.

(3.1)

According to [BFSV17a] this operator is self-adjoint, its spectrum is discrete
and symmetric with respect to the origin, and zero is not an eigenvalue. We
denote by µ1(Ω) > 0 the smallest positive eigenvalue of DΩ and refer to it as
the principal eigenvalue. In view of the symmetry of the spectrum about the
origin the principal eigenvalue determines the size of the spectral gap.

Note that infinite mass boundary conditions for the Dirac operator arise
when one considers the Dirac operator on the whole Euclidean plane R2 with
an “infinite mass" outside a bounded domain and zero mass inside it. This is
mathematically justified in [BCTS19, SV19] (see also [ALMR19] for a three-
dimensional version and [MOBP20] for a generalization to any dimension).
For this reason, these boundary conditions can be viewed as the relativistic
counterpart of Dirichlet boundary conditions for the Laplacian.

It is well known that for partial differential operators defined on domains
the shape of the domain manifests in the spectrum. In particular, bounds
on the eigenvalues can be given in terms of various geometrical quantities.
In many cases, it is also known that the ball (the disk, in two dimensions)
optimizes the lowest eigenvalue under reasonable geometric constraints; see
the discussion in the beginning of Section 2. In the same spirit, for any convex
domain Ω ⊂ R2, it is proven in [PS51, §5.6] and in [FK08, Theorem 2] that a
reverse Faber-Krahn-type inequality with a geometric pre-factor for the lowest
Dirichlet eigenvalues

λ1(Ω) ≤ |∂Ω|
2ri|Ω|

λ1(D), (3.2)

holds where ri > 0 is the inradius of Ω and D is the unit disk. Related upper
bounds for the lowest Dirichlet eigenvalue are obtained e.g. in [PW61, P60].
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For the two-dimensional massless Dirac operator DΩ with infinite mass
boundary conditions on a bounded, simply connected, C2-domain Ω a lower
bound on the principal eigenvalue is given in [BFSV17b] and reads in the case
of infinite mass boundary conditions as

µ1(Ω) >

√
2π

|Ω|
. (3.3)

This bound is easy to compute and it yields an estimate on the size of the
spectral gap. However, it is not intrinsically Euclidean, because the equality
in (3.3) is not attained on any Ω ⊂ R2.

One should also mention numerous results in the differential geometry lit-
erature, where lower and upper bounds on the principal eigenvalue have been
found for Dirac operators on two-dimensional manifolds without boundary
(see for instance [B92] and [AF99, B98]). In [R06], manifolds with bound-
aries are investigated and note that the mentioned CHI (chiral) boundary
conditions correspond to our infinite mass boundary conditions. For two-
dimensional manifolds, the author of [R06] provides a lower bound on the
first eigenvalue which is actually (3.3). We remark that upon passing to the
more general setting of manifolds the equality in (3.3) is attained on hemi-
spheres.

Our contributions concern geometric bounds on µ1(Ω). First, we find
counterparts of the inequality (3.2) for the principal eigenvalue µ1(Ω) of the
Dirac operator DΩ. To this aim we derive a new variational principle for DΩ,
which can be used to tackle other questions on the spectrum of DΩ. Second,
we support numerically the validity of the Faber-Krahn-type inequality for
µ1(Ω).

3.1 Sharp upper bounds on the spectral gap ([ABLO21,
LO19])

In this series of papers we obtained counterparts of the inequality (3.2) for the
principal eigenvalue of DΩ. The aim was to get an upper bound on µ1(Ω) in
terms of µ1(D) and geometric quantities, which turns into inequality provided
that Ω is a disk.

In [ABLO21] we proved that

µ1(Ω) ≤
|∂Ω|+

√
|∂Ω|2 + 8πµ1(D)(µ1(D)− 1)(πr2

i + |Ω|)
2(πr2

i + |Ω|)
. (3.4)

It is not hard to check that for Ω being a disk we get inequality in the above
inequality. Combining the inequality (3.4) with the geometric isoperimetric
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inequality and the definition of the in-radius we obtained a simpler upper
bound

µ1(Ω) ≤ |∂Ω|
πr2

i + |Ω|
µ1(D).

In order to prove (3.4) we established a new variational principle for the
Dirac operator DΩ, which is inspired by the strategy used to deal in [DES00,
DES03] with the Dirac-Coloumb operator. Recall the definition of the Cauchy-
Riemann operator ∂z := 1

2 (∂1+i∂2). We consider the following quadratic form

qµ,0[u] = 4‖∂zu‖2L2(Ω) − µ
2‖u‖2L2(Ω) + µ‖u|∂Ω‖2L2(∂Ω), dom qµ,0 = C∞(Ω),

and show that this form is semi-bounded and closable. Thus, it defines a
self-adjoint operator in the Hilbert space L2(Ω). We show that the spectrum
of this operator is discrete and denote by νΩ

1 (µ) its lowest eigenvalue. We
prove that µ1(Ω) = µ if and only if νΩ

1 (µ) = 0. In the case that νΩ
1 (µ) = 0

the respective eigenfunction u solves the oblique problem{
−∆u = µ2u, in Ω,

∂νu+ i∂tu+ µu = 0, on ∂Ω,

where ∂tu is the tangential derivative of u on the boundary ∂Ω. The advantage
of this variational method is that we reduce the problem to a one-component
operator and circumvent the boundary condition in (3.1).

In [LO19] we obtained a different upper bound on µ1(Ω). Let f : D → Ω
be a conformal map and let κ? > 0 be the maximum of non-signed curvature
of ∂Ω. Then we obtain that

µ1(Ω) ≤
(

2π

πr2
i + |Ω|

)1/2

κ?‖f ′‖H2(D)µ1(D), (3.5)

where ‖ · ‖H2(D) stands for the norm in the Hardy space H2(D). There are
geometric upper bounds on ‖f ′‖H2(D) available in the literature for convex
domains [K17] and for nearly circular star-shaped domains [G62]. Combin-
ing (3.5) with them we get purely geometric bounds on µ1(Ω).

3.2 Faber-Krahn conjecture ([ABLO21])
We conjecture that the inequality (3.3) can be sharpened in the following way.

Conjecture 3.1. There holds

µ1(Ω) ≥
√

π

|Ω|
µ1(D)
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where D is the unit disk. There is equality in the above inequality if and only
if Ω is a disk.

This conjecture is equivalent to the fact that among domains of a fixed
area the disk is the unique minimizer of the principal eigenvalue of the Dirac
operator with the infinite mass boundary condition.

Figure 3.1: Plot of the principal eigenvalue for 2500 domains (with smooth
boundary) randomly generated satisfying |Ω| = π, as a function of the perime-
ter.

We have computed the principal eigenvalue for 2500 domains (with smooth
boundary) randomly generated satisfying |Ω| = π. The corresponding eigen-
values are plotted in Figure 3.1, as a function of the perimeter. We observe
that the principal eigenvalue is minimized for the domain which also minimizes
the perimeter. By the classical isoperimetric inequality it is well known that
for fixed area, the perimeter is minimized by the disk. Thus, these numerical
results suggest that the Faber-Krahn type inequality stated in Conjecture 3.1
shall hold for the Dirac operator with infinite mass boundary conditions.

Besides this numerical test we have found that Conjecture 3.1 combined
with the one-component variational principle established by us in [ABLO21]
yields as a corollary the Bossel-Daners inequality for the Robin Laplacian in
two dimensions.
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4 δ-Interactions: optimization and spectral asymp-
totics

Schrödinger operators with δ-interactions supported on hypersurfaces attracted
attention in the last three decades; see the review paper [E08], the mono-
graph [EK15], and the references therein. One of the motivations to study
these operators is related to the fact that they serve as an idealized model for
the Schrödinger operators with regular potentials localized in the vicinity of
a hypersurface [BEHL17].

The most efficient way to introduce this operator is via the form method.
Let Σ ⊂ Rd, d ≥ 2, be a Lipschitz hypersurface, which is not necessarily
bounded or closed. Let the coupling constant α > 0 be fixed. The following
symmetric quadratic form in the Hilbert space L2(Rd)

qα,Σ[u] := ‖∇u‖2L2(Ω;Cd) − α‖u|Σ‖
2
L2(Σ), dom qα,Σ := H1(Rd), (4.1)

is closed, densely defined, and semi-bounded. Hence, it defines a self-adjoint
operator Hα,Σ in the Hilbert space L2(Rd). In the case that Σ ⊂ Rd is a
bounded closed sufficiently smooth hypersurface, which splits the Euclidean
space into a bounded domain Ω+ ⊂ Rd and an exterior domain Ω− ⊂ Rd, the
operator Hα,Σ can be explicitly characterised as

Hα,Σu=(−∆u+)⊕ (−∆u−),

domHα,Σ =
{
u ∈ H2(Rd \ Σ): u+|Σ = u−|Σ, ∂ν+u+|Σ+∂ν−u−|Σ = αu|Σ

}
,

where u± := u|Ω± and ∂ν±u±|Σ stands for the normal derivative of u± with
the normal pointing outwards of Ω±. The spectrum of Hα,Σ depends in a non-
trivial way on α and Σ and exploring this connection is a topic of permanent
interest.

For compact Σ the essential spectrum of Hα,Σ coincides with the interval
[0,∞) and there are finitely many negative eigenvalues. In two dimensions
there is at least one negative eigenvalue for all α > 0. In higher space di-
mensions there is a critical value α? = α?(Σ) > 0 such that σd(Hα,Σ) 6= ∅
if, and only if α > α?. The geometry of Σ manifests in a non-trivial in the
asymptotics of eigenvalues of Hα,Σ in the limit α → +∞. It turns out that
the sub-leading term in these asymptotic expansions can be expressed through
eigenvalues of a Schrödinger operator on Σ with a potential given in terms
of the curvatures of Σ (see e.g. [E03, EP14, EY02]). For fixed α > 0, it is
of interest to optimize the lowest eigenvalue of Hα,Σ among surfaces Σ that
fulfil certain geometric constraints. In particular, it is proved in [EHL06] that
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in two dimensions the lowest negative eigenvalue of Hα,Σ is maximized by a
circle among all sufficiently smooth contours without self-intersections of fixed
length.

For non-compact Σ the situation is qualitatively different. In partic-
ular, for Σ being a local deformation of a hyperplane or more generally
asymptotically flat, the essential spectrum of Hα,Σ coincides with the inter-
val [−α

2

4 ,+∞). Existence of bound states below the point −α
2

4 is a delicate
question. It is shown in [EI01] that δ-interaction supported on an asymptoti-
cally straight unbounded curve in R2 induces at least one bound state below
the threshold of the essential spectrum −α

2

4 provided that the interaction
support does not coincide with a straight line. In three dimensions a counter-
part of this result for asymptotically flat surfaces is proved in [EK03] under
the assumption that α is sufficiently large. The case of moderate α in three
dimensions remains open.

We address several related questions on the asymptotics of eigenvalues
and spectral optimization for Hα,Σ and its generalizations mainly in two and
three dimensions. First, we investigate the three-dimensional Schrödinger
operator with a δ-interaction supported on an unbounded conical surface. In
this geometric setting we characterise the essential spectrum, compute the
asymptotics of the discrete spectrum, and obtain an optimization result for
the lowest eigenvalue. Second, we analyse the existence and asymptotics of a
bound state of Hα,Σ for Σ being a weak local deformation of a plane in three
dimensions. Furthermore, we discuss optimization of the lowest eigenvalue of
Hα,Σ in two dimensions for Σ being an arc with two endpoints and consider
optimization of the lowest eigenvalue in some related settings. Finally, we
modify the operator Hα,Σ by adding a homogeneous magnetic field in the
kinetic energy term. In this last setting our results concern the asymptotics
of accumulation of the discrete spectra at the Landau levels.

4.1 Conical surfaces ([BEL14, EL17, LO16])
Let Σθ ⊂ R3 be the conical surface defined as

Σθ :=
{(
x1, x2, cot θ(x2

1 + x2
2)1/2

)
: (x1, x2) ∈ R2

}
,

where θ ∈ (0, π/2) is the aperture of Σθ. We consider the Schrödinger operator
Hα,Σθ with the δ-interaction of strength α > 0 supported on Σθ. In [BEL14]
we established that the essential spectrum of this operator coincides with the
interval [−α

2

4 ,+∞) and that its discrete spectrum is infinite. Moreover, we
proved that the same properties persist for δ-interaction of strength α > 0

20



supported on a local deformation of the conical surface Σθ. We also obtained
an explicit upper bound on the eigenvalues of Hα,Σθ .

A more detailed analysis of the discrete spectrum of Hα,Σθ is carried out
in [LO16]. We establish that the eigenfunctions corresponding to the discrete
eigenvalues of Hα,Σθ are all rotationally invariant with respect to the x3-
axis and that the eigenvalues of Hα,Σθ are non-decreasing in the aperture
θ. Moreover, we find the spectral asymptotics for Hα,Σθ . Recall that the
counting function R+ 3 E 7→ N−α2

4 −E
(Hα,Σθ ) of the discrete spectrum of

Hα,Σθ is defined for any fixed E > 0 by the number of eigenvalues of the
operator Hα,Σθ lying in the interval (−∞,−α

2

4 −E) with multiplicities taken
into account. In [LO16] we proved that

N−α2

4 −E
(Hα,Σθ ) ∼

cot θ

4π
| lnE|, E → 0+.

Besides the three-dimensional setting we address in [LO16] the counterpart
of this problem in space dimensions d ≥ 4. In the latter setting we obtain
that the essential spectrum is again [−α

2

4 ,∞) while the discrete spectrum is
empty.

Finally, in [EL17] we consider δ-interactions supported on more general
non-circular conical surfaces in three dimensions. Let T ⊂ S2 be a C2-smooth
loop on the unit sphere S2. Then we define the conical surface with the
cross-section T by

Σ(T) :=
{
rT : r > 0

}
.

It follows from the results of [BP16] that −α
2

4 is the lowest point of the
essential spectrum of the Schrödinger operator Hα,Σ(T) with δ-interaction of
strength α > 0 supported on Σ(T). Let us denote by λα1 (Σ(T)) the lowest
spectral point of Hα,Σ(T). In [EL17] we prove the following isoperimetric
inequality under the assumption |T| < 2π

λα1 (Σ(T)) ≤ λα1 (Σ(C)), for all α > 0, (4.2)

where C ⊂ S2 is the circle of the same length as T. This result, in par-
ticular, implies that at least for short cross-sections (|T| < 2π) the lowest
spectral point of Hα,Σ(T) is indeed a discrete eigenvalue below the bottom of
the essential spectrum −α

2

4 . In paper [EL17] we also analyse the situation
of a bounded conical surface, which can be defined as the intersection of an
unbounded conical surface Σ(T) with a ball of certain radius centred at the
origin. In the latter setting we again obtain an isoperimetric inequality for
the lowest eigenvalue similar to (4.2).
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4.2 Weak local deformations ([EKL18])
As it was already mentioned it remains an open problem to prove that in three
dimensions δ-interaction of strength α > 0 supported on a local deformation
of a plane induces at least one bound state below the bottom of the essential
spectrum −α

2

4 . Motivated by this open problem we considered in [EKL18]
δ-interactions supported on weak local deformations of the plane.

Let us first describe the geometric setting. Let f : R2 → R be a C2-smooth
compactly supported function (f 6≡ 0). Consider the hypersurface

Σβ := {(x, βf(x)) : x ∈ R2}, β > 0.

The essential spectrum of Hα,Σβ coincides with the interval [−α
2

4 ,∞). It
follows from [EK03] that for any β > 0 and for all sufficiently large α > 0

there is at least one bound state for Hα,Σβ below −α
2

4 . Our aim was to
consider the case of fixed α > 0 and sufficiently small β > 0.

We prove that for any fixed α > 0 and for all sufficiently small β >
0 the discrete spectrum of Hα,Σβ is non-empty and consists of exactly one
simple eigenvalue, which we denote by λα1 (Σβ). Our next result concerns the
asymptotics of this eigenvalue. Let us introduce the quantity

Dα,f :=

∫
R2

|p|2
(
α2 − 2α3√

4|p|2 + α2 + α

)
|f̂(p)|2dp > 0,

where f̂ is the Fourier transform of f . We obtain that

λα1 (Σβ) = −α
2

4
− exp

(
− 16π

Dα,fβ2

)(
1 + o(1)

)
, β → 0+.

4.3 Optimization for arcs and loops ([EL21, L19, L21])
Motivated by the result [EHL06] on the optimization of the lowest eigenvalue
for δ-interaction supported on a loop in R2, we obtained spectral isoperimetric
inequalities in several related settings using different techniques.

In [L19] we optimize the lowest eigenvalue of the two-dimensional Schrödinger
operator Hα,Σ with δ-interaction supported on an open C2-smooth arc Σ ⊂ R2

with two endpoints. Let λα1 (Σ) be the lowest negative eigenvalue of this op-
erator. We prove that

λα1 (Σ) ≤ λα1 (Γ), for allα > 0,
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where Γ ⊂ R2 is a line segment of the same length as Σ. The equality is
possible only if Γ and Σ are congruent. The constraint of the fixed length can
be replaced by fixing the endpoints of the arc and the maximizer is the line
segment connecting them.

We provide in [EL21] an alternative proof of the main result of [EHL06]
without using the Birman-Schwinger principle. Furthermore, we apply in [EL21]
this technique to a more general class of operators. Let Σ ⊂ R2 be a closed
C2-smooth loop parametrized by the unit speed map σ : [0, L]→ R2 with the
normal vector ν pointing outwards a bounded domain surrounded by Σ. Let
the parameters d−, d+ > 0 be such that the mapping

[0, L)× [−d−, d+] 3 (s, t) 7→ σ(s) + tν(σ(s))

is injective. This map defines parallel coordinates (s, t) on its range being
the curved strip in R2. We restrict our attention to measures µ of a special
structure given in parallel coordinates by

dµ = (1 + κ(s)t)dsdµ⊥(t), (4.3)

where κ is the curvature of Σ and µ⊥ is a finite measure on the interval
[−d−, d+]. The self-adjoint operator Hµ in the Hilbert space L2(R2) associated
to the formal differential expression −∆− µ can be rigorously introduced via
the quadratic form

H1(R2) 3 u 7→ ‖∇u‖2L2(R2;C2) −
∫
R2

|u|2dµ.

The essential spectrum of Hµ is [0,∞) and it has at least one negative eigen-
value. The case of δ-interaction of strength α > 0 supported on Σ corresponds
to the choice µ⊥ = αδ0, where δ0 is the Dirac δ-function supported at the
origin. By choosing the transversal measure dµ⊥ = V⊥(x)dx with real-valued
non-negative V⊥ ∈ L∞((−d−, d+)) we appear in the setting resembling the
soft quantum waveguide proposed in [E20].

We fix the transversal measure µ⊥ and optimize the lowest eigenvalue
λ1(µ) of Hµ with respect to the shape of Σ. We prove that

λ1(µ) ≤ λ1(µ◦)

where µ◦ is the measure on R2 of the type (4.3) having the same transversal
part µ⊥ as µ, but constructed on the circle of the same length as Σ.

Along with the above optimization problem we optimize λ1(µ) for fixed Σ
under variation of the transversal measure µ⊥. We prove that

λ1(µ) ≥ λ1(µ?)
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where µ? is the measure on R2 of the type (4.3) constructed on the same
loop Σ with the transversal measure being αδt? for certain t? ∈ [−d−, d+]
with α = µ⊥([−d−, d+]). In other words under the constraint of fixed to-
tal transversal measure of the interval [−d−, d+] the minimizer of the lowest
eigenvalue turns out to be a δ-interaction supported on a certain level curve
of the distance function to the loop Σ. We provide examples showing that
the optimal position t? need not coincide with an endpoint of the interval
[−d−, d+].

Finally, in [L21] we optimize the lowest eigenvalue of the Schrödinger op-
erator with a δ′-interaction supported on a C2-smooth loop Σ in R2. The
δ′-interaction is studied along with δ-interactions and the Schrödinger opera-
tor with δ′-interaction supported on hypersurface were first rigorously intro-
duced in [BLL13]. Suppose that Σ splits the Euclidean plane into a bounded
domain Ω+ ⊂ R2 and an unbounded exterior domain Ω− ⊂ R2. For a func-
tion u ∈ L2(R2) we recall the notation u± := u|Ω± . For ω > 0, consider the
quadratic form in the Hilbert space L2(R2)

H1(R2 \Σ) 3 u 7→ ‖∇u+‖2L2(Ω+;C2) +‖∇u−‖2L2(Ω−;C2)−ω‖u+|Σ−u−|Σ‖2L2(Σ).

This quadratic form defines a self-adjoint operator H′ω,Σ in the Hilbert space
L2(R2). The operator H′ω,Σ is regarded as Schrödinger operator with δ′-
interaction of strength β = 1/ω supported on Σ. As in the case of δ-
interactions the essential spectrum of H′ω,Σ coincides with the interval [0,∞)
and the negative discrete spectrum is non-empty. We denote by µω1 (Σ) the
lowest negative eigenvalue of H′ω,Σ. We prove that

µω1 (Σ) ≤ µω1 (C), for all ω > 0,

where C is a circle of the same length as Σ.

4.4 Landau Hamiltonians with δ-interactions ([BEHL20])
In [BEHL20] we study the Landau Hamiltonian perturbed by a δ-interaction
supported on a curve. This operator is defined by a quadratic form similar to
the one in (4.1) with the magnetic gradient in the kinetic energy term. Recall
that the vector potential of the homogeneous magnetic field of intensity B ≥ 0
is defined by

A =
1

2
B(−x2, x1)>.

We introduce the magnetic gradient by

∇A := i∇+ A.
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Let Σ ⊂ R2 be the boundary of a compact C1,1-domain and let α ∈ L∞(Σ)
be real-valued. We consider the quadratic form

qBα,Σ[u] := ‖∇Au‖2L2(R2;C2) + (αu|Σ, u|Σ)L2(Σ),

dom qBα,Σ := {u : u, |∇Au| ∈ L2(R2)}.

This quadratic form defines a self-adjoint operator HBα,Σ in the Hilbert space
L2(R2), which we regard as the Landau Hamiltonian with δ-interaction of
strength α supported on Σ. Here, we have chosen a slightly different con-
vention. Namely, the interaction term in the quadratic form comes with a
different sign and the interaction strength is varying along the support of
interaction.

In the caseB = 0 the Landau Hamiltonian H0
α,Σ is essentially the Schrödinger

operator with δ-interaction supported on Σ defined via the form in (4.1).
While in the case that α ≡ 0 the operator HB0,Σ is just the usual Landau
Hamiltonian, which we denote by HB .

We show that the essential spectrum of HBα,Σ consists of Landau levels.

σess(H
B
α,Σ) = {B(2q + 1): q ∈ N0}.

It is well known that perturbations of the Landau Hamiltonian HB can gen-
erate accumulation of discrete eigenvalues to the Landau levels. For addi-
tive perturbations of HB by an electric potential this was shown by Raikov
in [R90]. More recently similar results were proved by Pushnitski and Rozen-
blum in [PR07] for Landau Hamiltonians on exterior domains with Dirichlet
boundary conditions. We analyse this phenomenon for the operator HBα,Σ.

We prove spectral asymptotics if suppα is a C∞-smooth arc Γ ⊂ Σ and
α is uniformly positive (uniformly negative) in the interior of Γ. In this
asymptotics enters the logarithmic capacity of Γ. Recall that the logarithmic
energy of a measure µ on R2 is given by

I(µ) :=

∫
R2

∫
R2

ln
1

|x− y|
dµ(x)dµ(y).

The logarithmic capacity of a compact set K ⊂ R2 is defined by

Cap (K) := sup
{
e−I(µ) : µ measure onR2, suppµ ⊂ K, µ(K) = 1

}
.

If, e.g., α > 0 inside the C∞-smooth arc Γ = suppα then the discrete eigenval-
ues (counted with multiplicities) of HBα,Σ in the interval (B(2q+1), B(2q+2)],
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q ∈ N0, form a sequence λ+
1 (q) ≥ λ+

2 (q) ≥ · · · ≥ B(2q+1) with the asymptotic
behavior

lim
k→∞

(
k!
(
λ+
k (q)−B(2q + 1)

))1/k

=
B

2

(
Cap (Γ)

)2
.

For sign-changing α and for less smooth suppα we obtain estimates on the
accumulation rate of the eigenvalues towards the Landau levels.
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