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1 Dirac materials

Dirac equation was derived by Paul Dirac in 1928 in his seek for
a consistent description of quantum relativistic particles [1]. The
first-order differential equation with matrix coefficients proved to be
an indispensable tool for description of the fermions with spin-1

2
.

It was originally intended to describe dynamics in four-dimensional
space-time. However, the equation with reduced spatial dimensions
emerges in description of surprising variety of both classical and
quantum systems. These physical settings were coined as Dirac ma-
terials or Dirac matter in the literature [2], [3].

Experimental isolation of graphene marked a milestone in physics.
It proved that genuinely two-dimensional crystals can exist in the
Nature. It confirmed theoretical prediction that the dynamics of low-
energy charge carriers in graphene is governed by two-dimensional
Dirac-type equation. This breakthrough ignited intensive, both the-
oretical and experimental, investigation of planar quantum systems
where the quasi-particles exhibit relativistic-like properties. Besides
graphene, the (2 + 1) dimensional Dirac fermions were predicted or
observed in silicene, germanene or dichalcogenides [4], [5], [6], [7], [8].
Dirac materials were also prepared artificially. Relativistic dynam-
ics of quasi-particles was reported in hexagonal lattices assembled
by positioning carbon oxide molecules on the copper surface [9], in
hexagonal arrays of ultra cold atoms in optical lattices [10].

In description of these systems, Dirac equation appears in great
variety of modifications that reflect diverse physical situations. Dirac
fermions in graphene and other planar crystals are described by two-
dimensional Dirac equation. The one-dimensional Dirac equation
emerges naturally in description of the relativistic quasi-particles in
carbon nanotubes [12]. Interaction with external electromagnetic
field is incorporated into the stationary equation in the form of mi-
nimal coupling. Qualitatively similar Hamiltonian is obtained when
the mechanical deformations of the crystal are taken into account;
the nontrivial strain tensor gives rise to the effective vector and scalar
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potential [11], [12], [6]. This way, the mechanical deformations mimic
presence of (electro-)magnetic field. Dirac fermions with position-
dependent mass appear in the heterostructures where the graphene
sheet is posed on the substrate (e.g. on hexagonal boron-nitride) [13],
[14]. Dirac equation with nontrivial metric tensor describes fermions
on the curved sheets or on carbon macromolecules (e.g. fullerenes)
[15] [16], [17]. Nontrivial boundary conditions reflect termination
of the crystal lattice and its orientation with respect to the lattice
structure [18].

Relativistic quasi-particles in Dirac materials possess several de-
grees of freedom. Pseudo-spin is related to the crystal structure
where the elementary cell is formed by two atoms. Valley degree of
freedom emerges as there are two inequivalent Dirac points in the
first Brillouin zone where the dispersion relation is approximately
linear in momentum. The electrons in the lattice have spin degree of
freedom. In dependence on the considered physical situation, some
of these degrees of freedom can be neglected as they are not in-
volved in dynamics. For instance, only the pseudo-spin is relevant
when smooth electromagnetic fields are considered as the interaction
does not change spin of the particles and does not cause flipping of
the states between the two Dirac valleys. In this case, the effective
Dirac Hamiltonian has the form of 2 × 2 matrix operator. When
either the spin-orbit interaction [19] or the interaction mixing the
valley index is considered [20], then the Dirac operator is given in
terms of either 4 × 4 or 8 × 8 matrices.

When few layers of the two-dimensional crystals are stuck to-
gether, the new intriguing properties arise that were absent in single
layer crystals [21]. Graphene has no gap between conductance and
valence bands and its opening is nontrivial. It represents major com-
plication for its use in electronics; the electronic transport in gapless
Dirac material cannot be controlled easily by the electrostatic field1.

1This is related to the Klein tunneling known in relativistic quantum me-
chanics. The (relativistic) massless electron can tunnel through the electrostatic
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In bilayer graphene, the gap can be opened by application of the
electrostatic field such that the two layers have different electrostatic
potential [22]. The low energy excitations of electrons in the bilayer
graphene can be effectively described by the Hamiltonian given in
terms of 4 × 4 matrices.

In the selected papers [Jak1]-[Jak17], I focused on the analy-
sis of two-dimensional Dirac equation describing quasi-particles in
presence of electromagnetic interaction [Jak1], [Jak5], [Jak6], [Jak7],
[Jak10], [Jak12], mechanical deformations [Jak2], [Jak3], [Jak6],
[Jak11], or spin-orbital coupling [Jak13], [Jak14], [Jak15]. The spec-
tral and transport (scattering) properties were of the main interest.
The obtained results have broader applicability due to the variety of
systems described by the considered dynamical equation. Neverthe-
less, I mostly interpreted the results in the context of carbon nan-
otubes [Jak1], [Jak2], [Jak3], [Jak5], [Jak6], graphene nanoribbons
[Jak16], or graphene and bi-layer graphene [Jak1], [Jak6], [Jak7],
[Jak9], [Jak10], [Jak11], [Jak12], [Jak13], [Jak14], [Jak15], and [Jak16].
In [Jak8], we analyzed a system described by Dirac equation in the
context of classical optics. In the paper [Jak4], we discuss con-
struction of reflectionless systems and compared the results with
the known integrable models associated with the known solutions of
integrable AKNS hierarchies.

2 The methods

In the presented research, I followed two complementary strategies.
In the first one, I focused on construction of exactly solvable models
with desirable physical characteristics, with bounds states or spe-
cific scattering properties in particular. The second one was the
qualitative spectral analysis where the relevant information on the
energy spectrum and transport properties of Dirac fermions was de-

barrier of any height without being reflected.
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rived without the need to solve dynamical equation explicitly. Let
me comment on the two directions in more detail:

• Analytical solvability (partial at least) of the evolution equa-
tion is the distinctive property of any solvable model. Neverthe-
less, the family of analytically solvable differential equations is
not very populated. It is true for ordinary differential equations
and even more for partial differential equations that describe
higher-dimensional systems.

We used diverse techniques that allow us to exploit this fa-
mily. They share the same philosophy: analytically solvable
equation is transformed into another one that can be inter-
preted as an evolution equation of the new physical system.
Let me mention a simple example: the operator H0 = −iσ1∂x
can be transformed into H1 = U−1H0U = −iσ1∂x + V (x)σ0
via a unitary transformation U = eiσ1

∫
V (x)dx, where σ1 is the

Pauli matrix and σ0 is the identity matrix. The initial op-
erator corresponds to free Dirac fermion on the line, whereas
H1 describes dynamics of the particle in presence of an elec-
trostatic potential V (x). As H1 inherits the trivial scattering
characteristics of the free particle, the link between the two
operators provides a simple explanation of the Klein tunneling
of Dirac fermions in graphene through electrostatic barriers
in normal direction [Jak1]. The same technique was used for
construction of solvable models of Dirac fermions in electro-
magnetic field [Jak7]. We used a unitary transformation also
in [Jak13], [Jak14], [Jak15], and [Jak17], where construction of
the systems with extended degrees of freedom was of the main
interest.

Change of coordinates (point transformation) alters the form
of evolution equation. When the altered equation can describes
evolution of the new physical system, the point transformation
can provide interesting predictions. For example, the point
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transformation served well to show that the wave packets of
Dirac fermions in graphene can be focused by unidirectional
strains [Jak11].

The last example is Darboux transformation. It is represented
by a differential operator [24] whose kernel is typically formed
by some fixed eigenstates of the initial Hamiltonian. The trans-
formation is neither unitary nor invertible. It intertwines two
Hamiltonians, let us call them again H0 and H1, as LH0 =
H1L. When an eigenstate Ψ of H0 is known, we can obtain
its analogue LΨ for H1. The inverse-like transformation to
L can be obtained by conjugation of the intertwining relation
(provided that H0 and H1 are hermitian). Indeed, L† satis-
fies H0L

† = L†H1. The transformation can be generalized by
considering intertwining operators of higher-order whose ker-
nel can also consist of generalized eigenstates (Jordan states)
[25]. The construction for Dirac operators via intertwining re-
lations was discussed both for one-dimensional [26] and higher-
dimensional models [27], [28]. Darboux transformation is par-
ticularly suitable for construction of systems with bound states
as the Hamiltonian H1 can possess discrete energies that were
absent in the spectrum of H0. We used Darboux transforma-
tion for construction of the systems where Dirac fermions in
graphene or carbon nanotubes were in presence of mechanical
deformations [Jak2], [Jak3]. It was employed in construction
of the new systems with antilinear symmetry (PT -symmetry)
that find their application in optics [Jak8].

Darboux transformation is not limited to stationary systems,
it can be used for construction of time-dependent settings [29].
It can also serve for construction of partially solvable planar
systems [Jak12]. In the context of physics of graphene, Dar-
boux transformation was mostly used for Dirac equation given
in terms of 2×2 matrices. In [Jak15], and [Jak17], we employed
Darboux transformation for construction of solvable systems in

8



terms of 4×4 systems where inhomogeneous spin-orbital inter-
action in graphene or interlayer interaction in bilayer graphene
were of interest.

In our research, we frequently identified the initial known equa-
tion with the dynamical equation of the free particle, reflec-
tionless Pöschl-Teller (Rosen-Morse) model, or with the Lamé
finite-gap equation. These solvable systems share one remark-
able property, they belong to the family of finite-gap systems.
Their potentials are solutions of specific non-linear differen-
tial equations that belong to the AKNS (KdV) hierarchy of
integrable systems. They have nontrivial integral of motion
that can be identified with the Lax operator. Its presence
implied nontrivial algebraic structure coined as hidden super-
symmetry, where grading operator was identified with a space
reflection operator and the supercharges were based on the Lax
operator. The superalgebraic structure was showed to reflect
spectral properties of the considered systems in [Jak2], [Jak3],
[Jak5].

The new concepts and constructions were frequently illustrated
with the use of the either massive or massless free-particle
model. Fixing H0 in this manner, the new models represented
by H1 inherited some of its peculiar properties, e.g. reflection-
less scattering on the potential barriers [Jak2], [Jak4], [Jak8],
[Jak15], [Jak17]. With this choice of the initial system, we were
got the new insight into the Klein tunneling or omnidirectional
Klein tunneling in diverse physical systems [Jak1], [Jak12].

• When analytic solution of evolution equation is not feasible,
one can employ qualitative methods to derive valuable infor-
mation on the system without the need of explicit solutions.
Variational principle for Schrödinger operators tells us that the
expectation value of energy for any state from the domain of
the Hamiltonian is equal or greater than the ground state ener-
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gy. When the asymptotic behavior of the potential allows us
to fix the threshold of the essential spectrum, the variational
principle can be used to prove existence of bound states with
discrete energies in the system. The knowledge of the eigen-
states is not essential as the variational principle allows us to
work with auxiliary functions belonging to the domain of the
Hamiltonian (or of its quadratic form).

It is possible to use this framework for a class of Dirac op-
erators with chiral symmetry whose squares are diagonal and
coincide with Schrödinger Hamiltonians. Dirac operators with
magnetic field possessing translational symmetry belong into
this class. We investigated their spectral properties in a series
of works [Jak6], [Jak9], [Jak10], [Jak11] where inhomogeneous
magnetic field, effective mass or strains were associated with
the vector potential.

3 Structure of the thesis

3.1 Review of concepts and techniques

I will provide a short review basic concepts that are useful in de-
scription of graphene and carbon nanotubes. I will show how Dirac
equation emerges in dynamics of the condensed matter systems, how
it reflects crystal properties. The origin of degrees of freedom pos-
sessed by Dirac fermions in graphene will be discussed as well as
different types of interactions. Electromagnetic interaction and me-
chanical deformations as well as the interactions that can change
spin or valley degrees of freedom will be of particular interest.

Then I will provide a brief introduction into the methods and
concepts that I used in the analysis of the mentioned systems. In par-
ticular, I will review Darboux transformations both for Schrödinger
and Dirac Hamiltonians, their role in supersymmetric quantum me-
chanics, and the extensions based on higher-order Darboux trans-
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formation and confluent Darboux transformation. Advantages and
weaknesses of the framework will be pointed out. I will discuss basics
definitions and concepts on finite-gap integrable systems, e.g. Lax
operators and AKNS hierarchies. The basic concepts and definitions
for the qualitative analysis will be presented as well.

The next part will contain the selected papers [Jak1]-[Jak17],
grouped by the discussed topics. The anticipated structure of this
part is as follows2:

3.2 Physics of Dirac fermions in graphene-based
systems via Darboux transformations

Darboux transformation is defined both for one-dimensional Schrö-
dinger and Dirac operators. It can be used for analysis of Dirac
operators in both cases. Yet, in the first case, it is to be applied
to the square of Dirac Hamiltonian that should coincide with the
Schrödinger operator. In our works, we preferred to employ direct
Darboux transformation that intertwines two Dirac Hamiltonians.
It was used for the analysis of confined Dirac fermions in twisted
carbon nanotubes, calculation of their Green’s functions, and local
density of states [Jak2], [Jak3]. Darboux transformation of Dirac
operator was also utilized in [Jak4] where a family of reflectionless
models was discussed in the context of finite-gap integrable mod-
els. A confluent Darboux transformation for Dirac Hamiltonians
was proposed in [Jak8] and utilized for generation of PT -symmetric
Hamiltonians applicable in the context of classical optics.

Darboux transformation of Dirac Hamiltonian cannot alter elec-
trostatic field. We proposed an alternative construction in [Jak7]
where we used gauge transformation to generate the new Hamilto-
nian of the required form. In [Jak2], [Jak3], [Jak5], we focused on
the relation between the superalgebra, generated by the Hamiltonian

2in each subsection, a brief review of the results is followed by extended
abstracts of the presented works
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and its integrals of motion, and the spectral properties of considered
models. In [Jak5], we approximated the effect of homogeneous mag-
netic field in carbon nanotube by a solvable finite-gap potential.

Finally, let me comment on our effort in the analysis of the elec-
trostatic confinement and Klein tunneling of Dirac fermions in elec-
trostatic barriers. In [Jak1], rather simple but useful construction
based on unitary transformation was used to provide an alternative
explanation for Klein tunneling in carbon nanotubes and in planar
graphene for specific (normal) direction of incidence. In [Jak12], we
employed time-dependent Darboux transformation and Wick rota-
tion of coordinates to construct a model where all-angle Klein tun-
neling emerges in presence of two-dimensional electrostatic field. We
also discussed confinement of Dirac fermions by the potential. These
results were employed in [Jak16] where we studied confinement by
Dirac fermions by the electrostatic field in arm-chair nanoribbons.

Interactions in carbon nanotubes via supersymmetry

[Jak2] Supersymmetric twisting of carbon nanotubes
Vector potential in one-dimensional Dirac equation can be re-
lated to the radial twist of the nanotube. Darboux transforma-
tion was used in the analysis of twisted carbon nanotubes for
the first time. We focused on two different frameworks where
Darboux transformation provides us with Dirac Hamiltonian of
1D fermion in a twisted carbon nanotube. We showed that the
twists can confine Dirac fermions. We calculated the Green’s
function and local density of states (LDOS) of the new sys-
tems with the use of Darboux transformation. We found that
LDOS decreases in the space where bound states are local-
ized. Two explicit models of twisted carbon nanotubes were
discussed, both with asymptotically inverted (single-kink) and
asymptotically vanishing (double-kink) twists. They were su-
persymmetric partners of the free particle model, therefore,
they possessed nontrivial integral of motion. It allowed us to
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define hidden nonlinear supersymmetry of the new model. The
bound state energies were found in dependence of the twist.
Darboux transformations was proposed as a useful tool for
deformation-induced spectral engineering.

[Jak3] Finite-gap twists of carbon nanotubes and an emer-
gent hidden supersymmetry
In the work, we focused on the specific class of systems where
the vector potential belongs into the family of finite-gap po-
tentials. These potentials are solutions of one of the nonlinear
differential equations of the AKNS hierarchy. They have re-
markable properties. When being periodic functions, the Dirac
Hamiltonian has finite number of energy gaps in its spectrum.
It has an integral of motion, Lax operator, whose kernel is
spanned by the states corresponding to the band-edge energies.
We reviewed the known result, e.g. closed analytical form for
diagonal Green’s function (also called Gorkov resolvent) and
the analytic formula for local density of states LDOS as well as
the integrated density of states (DOS). We discussed explicit
examples of two-, three- and four-gap potentials. Three-gap
model has a gap between positive and negative energies. We
introduced the quantity called average twist and demonstrated
that it is related to the spectral gap. It was vanishing in case
of two- and four-gap systems, whereas it was non-vanishing in
case of three-gap model. The extended Hamiltonian, which
describes Dirac fermions in both Dirac valleys, commutes with
the time-reversal operator. It is in contrary to the magnetic
field as the pseudo-magnetic field does not break time-reversal
symmetry. All the energy levels are doubly degenerate in ac-
cordance with Kramer’s theorem. We showed that there exists
hidden nonlinear supersymmetry that reflects spectral proper-
ties, the number of bands and degeneracy of energy levels in
particular. The square of the supercharges gets factorized in
terms of the band-edge energies.
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[Jak5] Carbon nanotubes in an inhomogeneous transverse mag-
netic field: exactly solvable model
When in presence of a magnetic field, Dirac fermions in graphene
are affected by the perpendicular to the surface component of
the field only. Due to this fact, the magnetic field ”felt” by
the Dirac fermions in carbon nanotubes (small cylinders of
graphene) is altered by the curved surface of the nanotube. In
case of homogeneous magnetic field, the component of the field
perpendicular to the surface of the nanotube is inhomogeneous
and the stationary equation is not exactly solvable. We pro-
posed an exactly solvable model where the homogeneous field
is approximated in terms of finite-gap Lamé potential. Inho-
mogeneity of the external field (also interpretable as a devia-
tion from the perfectly circular profile of the nanotube) made
the stationary equation solvable for the vanishing longitudinal
the momentum. We utilized exact solutions of Lamé equation
to get the eigenstates of the Hamiltonian. The integral of mo-
tion associated with the finite-gap Lamé equation can be inter-
preted as the supercharge of the superalgebra. We show that
for the metallic and maximally semiconducting nanotubes, we
can define grading operator that gives rise to N = 2 super-
symmetry. In the last section, we show that the energy levels
are stable with respect to the fluctuations of the momentum
parallel with the symmetry axis.

Extensions of Darboux transformations, reflectionless
models and classical optics

[Jak4] Twisted kinks, Dirac transparent systems, and Dar-
boux transformations
We applied Darboux transformation on the model of one-di-
mensional free particle with constant mass. The transformed
Hamiltonians formed a four-parametric family with singula-
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rity-free potentials consisting of inhomogeneous vector poten-
tial and a mass term. We showed that these reflectionless po-
tentials satisfy corresponding equations of the AKNS hierarchy.
For specific choices of the parameters, it was possible to iden-
tify them with the reflectionless models known in the realm
of finite-gap integrable systems. We also discussed reflection-
less Schrödinger operators with matrix potential defined as the
squares of the reflectionless Dirac operators. The associated
algebra of integrals of motion was of our interest.

[Jak7] Spectrally isomorphic Dirac systems: Graphene in an
electromagnetic field
Darboux transformation does not allow to alter the electro-
static interaction in Dirac Hamiltonian. I proposed an alter-
native construction of solvable models that allows for manipu-
lation with the electostatic field. It is based on an inhomoge-
neous gauge (unitary) transformation. I discussed the explicit
form of the transformation and the range of its applicability. I
showed that solvability of stationary equation is not altered by
addition of a constant mass term. I illustrated the construc-
tion on examples of localized electromagnetic barriers based on
Rosen-Morse II and Scarf II potentials as well as on the peri-
odic electromagnetic potential based on two-gap Lamé model.

[Jak8] Confluent Crum-Darboux transformations in Dirac
Hamiltonians with PT-symmetric Bragg gratings
Counter-propagating waves in Bragg gratings can be described
within the framework of coupled mode theory, where the Max-
well equations turn into Dirac-type equation for zero energy.
The role of the vector potential and the mass term is played
by quantities that fix the refractive index. In the article, we
provided confluent extension of Darboux transformations for
Dirac equation. The confluent Darboux transformation is de-
fined in terms of a single eigenstate and associated Jordan
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state. We discussed construction of the Jordan states. We
presented formulas for both the higher-order Darboux trans-
formation and the associated new Hamiltonians in terms of
Wronskians. We discussed the mapping between eigenstates
and Jordan states mediated by the Darboux transformation.
In the application of the framework, the settings with PT-
symmetric interaction were of our interest. We showed that
they can be obtained when the seed solutions (kernel of Dar-
boux transformation) have definite PT-parity. We used the
confluent transformation to construct two explicit reflection-
less models obtained from the free particle system. In the first
example, the free particle was massive and the seed solutions
of zero energy were exponentially expanding. The potential
term as well as the bound states in the new system were ex-
ponentially decreasing. In the second case, the particle was
massless. We fixed the zero mode and its Jordan state as the
seed eigenstates for Darboux transformation. We show that
the new potential as well as the bound states have 1/x decay.
The second case illustrates the advantage of confluent trans-
formation that allows us to produce singularity-free potentials
in case where the standard transformation would fail. In both
cases, the complex refractive index is calculated.

Klein tunneling and confinement of Dirac fermions by
electrostatic field

[Jak1] Klein tunneling in carbon nanostructures:
A free-particle dynamics in disguise
Dirac fermions in metallic carbon nanotubes are remarkably
inert with respect to backscattering on the impurities. It is un-
derstood as the manifestation of Klein tunneling of the quasi-
particles through electrostatic barriers. In non-relativistic quan-
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tum mechanics, reflection-less systems are related with free-
particle system via supersymmetric (Darboux) transformation.
It inspired us to find similar structure for Dirac operator with
electrostatic barrier. The intertwining operator was found in
the form of a unitary operator, the associated superalgebra was
of the zero-order3. The framework was also used to calculate
s-waves of generic systems with rotational symmetry.

[Jak12] Super-Klein tunneling of Dirac fermions through elec-
trostatic gratings in graphene
Super-Klein tunneling is a phenomenon where the particle goes
through the barrier without reflection, independently on the
incidence angle. We constructed a model of a comb of scat-
terers where absence of backscattering was independent on the
incidence angle, provided that the particle had specific energy.
The result demonstrated that the super-Klein tunneling does
not rely on translational symmetry. We constructed the model
with the use of time-dependent Darboux transformation ap-
plied on the free particle model and Wick rotation of coor-
dinates. It was granted by construction that the new model
was reflectionless at specific energy, i.e. that it possessed the
super-Klein tunneling. We also found that there are bound
states confined at the electrostatic barrier.

[Jak17] Dirac fermions in armchair graphene nanoribbons
trapped by electric quantum dots
The edge properties of graphene nanoribbons are encoded into
the boundary conditions imposed on the solutions of the dy-
namical equation. We proposed an elegant way how to con-
struct wave functions that comply with boundary conditions,
with the use of specific projection operators. We applied this

3Anticommutator of the supercharges is a typically a polynomial in the
Hamiltonian. In the standard supersymmetric quantum mechanics, it is of the
first order. It is a polynomial in case of higher-order quantum mechanics.
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technique in construction of bound states confined by electro-
static field in armchair nanotubes. The energy gap of armchair
nanoribbons can be both vanishing or finite, dependently on
the boundary condition. We considered two situations where
the energy gap was either vanishing or maximal. We used solv-
able model of Dirac fermions in structured electric field and the
explicit formulas for the bound states. The electric field did
not alter essential spectrum. Therefore, we could show that
the energy of bound states was either discrete or it belonged
to the essential spectrum. In the later case, we dealt with the
bound states in the continuum.

3.3 Qualitative analysis of energy spectrum and
transport properties of Dirac fermions

It is not necessary to solve dynamical equation in order to guarantee
existence of bound states in the system. In [Jak6], we focused on a
one-dimensional stationary equation for Dirac fermion in presence of
inhomogeneous vector potential or mass term. We found a set of cri-
teria for existence of bound states (discrete energies) in the system.
In [Jak9], we considered two-dimensional systems with translational
invariance. We showed that discrete energy levels and associated
bound states of the effective one-dimensional Hamiltonian can be
used to construct (partially) dispersionless wave packets of specific
group velocity. In [Jak10], we used the previous results to analyze
transport properties in the wave guides in graphene formed by the
magnetic field. We proposed a simple device based on a set of elec-
tric wires that allowed to change quantum transport of dispersionless
wave packets by simple changes of currents in the wires. We further
extended the analysis by considering planar systems under unidirec-
tional strains [Jak11]. We found that the strains lead naturally to
essentially unidirectional transport of dispersionless wave packets.
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[Jak6] Qualitative analysis of trapped Dirac fermions
in graphene
We found sufficient conditions for existence of bound states in
the spectrum of one-dimensional Dirac equation with asymp-
totically constant vector potential. The criteria were found
with the use of variational principle. It was applied on the
square of Dirac Hamiltonian that coincides with Schrödinger
operator. We discussed three different scenarios where this
type of interaction can trap Dirac fermions: magnetic traps, ef-
fective mass traps and mechanical deformations. We discussed
radial twists of carbon nanotubes, effective mass trenches caused
by folded substrate and magnetic field trap generated by the
wire with electric current.

[Jak9] Dispersionless wave packets in Dirac materials
We focused on two-dimensional systems with translational sym-
metry in one direction. The energy operator was written as
direct integral of effectively one-dimensional Hamiltonians act-
ing on the spaces with fixed value of longitudinal momentum.
We showed that discrete energies of the effective Hamiltonians
form specific bands in the energy spectrum. We constructed
wave packets from the bound states corresponding to these en-
ergies and showed that they are dispersionless in perpendicular
direction to the barrier. We discussed influence of perturba-
tions on the propagation of the (partially) dispersionless wave
packets. We presented experimentally realizable system with
inhomogeneous mass term where dispersionless wave packets
with different valley index could be observed.

[Jak10] Qualitative analysis of magnetic waveguides for two-
dimensional Dirac fermions
We considered systems described by 2 × 2 two dimensional
Dirac equation with constant mass in presence of an inhomo-
geneous magnetic field. We focused on the qualitative analysis
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of confinement and transport of the wave packets by magnetic
traps with translational symmetry. Separability of the system
in the Cartesian coordinates allowed us to use qualitative crite-
ria for existence of bound states of one-dimensional Dirac op-
erator derived in [Jak6]. Dependence of the discrete energies of
the effective 1D Dirac Hamiltonians on longitudinal momen-
tum k was of our interest as it implied formation of energy
bands of the two-dimensional energy operator. In dependence
on the asymptotic properties of the vector potential, we pro-
vided some estimates for the intervals of k where the existence
of the discrete energy bands is either granted or they cannot
exist at all. We discussed existence of bidirectional or (essen-
tially) unidirectional dispersionless wave packets. We investi-
gated transport properties of the dispersionless wave packets
in the field generated by a set of current wires and by magne-
tized strips. We proposed a simple device based on a bunch
of electric wires that allowed for an easy manipulation of the
magnetic field and for the control of transport properties of
the dispersionless wave packets.

[Jak11] On the propagation of Dirac fermions in graphene with
strain-induced inhomogeneous Fermi velocity
We analyzed the effect of unidirectional strain of graphene on
dynamics of the wave packets. We showed that the trajectory
of the wave packet gets curved and the wave packet is squeezed
in direction of the strain. The effects are explained both qual-
itatively and quantitatively by the link with the free-particle
system via suitable point transformation. When the unidirec-
tional strain was inhomogeneous along both Cartesian axes,
the link with the free particle was no longer applicable. Nev-
ertheless, the point transformation was used to show that the
wave packets get focused (more localized) in the region with
the strain. Additionally it was possible to map the Hamil-
tonian with strains into the Dirac operator with an effective
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magnetic field. This effective energy operator allowed for qual-
itative spectral analysis with the use of the criteria derived in
[Jak10]. We showed that unidirectional strain gives rise nat-
urally to essentially unidirectional transport of dispersionless
wave packets. We showed that combination of an external
magnetic field and unidirectional strain can generate valley-
distinguished transport of the wave packets with possible ap-
plication in valleytronics.

3.4 Coupled systems of Dirac fermions

In dependence on the involved interactions, it can be necessary to
use 4×4 matrices in description of Dirac fermions in graphene as the
additional degrees of freedom get coupled. In addition to the pseudo-
spin, there can be also involved valley- or spin-degrees of freedom. In
bilayer graphene, the additional degree of freedom reflects presence
of the two interacting graphene sheets.

It can be considerably more difficult to solve the corresponding
dynamical equations than those given in term of 2 × 2 matrices.
In the series of articles [Jak13], [Jak14], and [Jak15], we discussed a
family of 4×4 Hamiltonians describing such interactions that can be
uncoupled by a suitable unitary transformation. The evolution equa-
tion is reduced into two, lower-dimensional Dirac equations with aux-
iliary interactions. The general family was described in [Jak13]. In
[Jak14], the scheme was employed for the analysis of bilayer graphene
with interlayer or intralayer interactions. In [Jak15], Darboux trans-
formation of the reducible systems was discussed and its advantages
in design of quantum systems demonstrated. Finally, we used Dar-
boux transformation and the associated supersymmetric structure of
the involved operator for construction of coupled system where two
Dirac fermions with different Fermi velocities can exist [Jak17].

[Jak13] Reduction scheme for coupled Dirac systems
In the work, we focused on the class of 4 × 4 Dirac oper-
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ators where the associated dynamical equation could be re-
duced into two auxiliary equations of lower dimension, and
therefore, made the calculations more feasible. We found the
multi-parametric class of energy operators that complied with
the condition of reducibility. They find their application in
description of distortion scattering or spin-orbit interaction in
graphene, as well as in bilayer graphene. We presented explicit
examples with interactions dependent on two spatial coordi-
nates or on time.

[Jak14] Confinement in bilayer graphene via intra- and inter-
layer interactions
We focused on the analysis of spectral properties of Dirac
fermions in graphene. We considered 4 × 4 Dirac Hamiltonian
with possibly inhomogeneous vector potential, on-site interac-
tion and interlayer interaction. The Hamiltonian also com-
prises nonvanishing trigonal warping interaction. We analyzed
how the stationary equation can be solved, dependently on
the mentioned interactions. The stationary equation can be
decoupled into Schrödinger-like form with energy-dependent
potential. Its analytic solution was not feasible in general,
nevertheless, there were detected specific cases that could be
treated analytically. They were analyzed in detail for three
scenarios where either vector potential, on-site interaction, or
interlayer coupling were inhomogeneous. We found in all these
cases that local fluctuations of the interaction can confine Dirac
fermions. We demonstrated this effect on explicit examples,
where the decoupled, energy-dependent equation was matched
with the one of harmonic oscillator, Rosen-Morse or Pöschl-
Teller model.

[Jak15] Form preserving Darboux transformations for 4 × 4
Dirac equation
Darboux transformation is a powerful tool for construction of
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the new solvable models. Nevertheless, it can be difficult to
keep control over the form of the potential in the Darboux-
transformed Hamiltonian. This problem grows rapidly with
dimension of the involved matrices. Using our previous re-
sults [Jak13], we showed that Darboux transformation can be
used for construction of 4×4 Dirac operators where the poten-
tial terms have specific form given either by spin-orbit interac-
tion or distortion scattering. The key point was reducibility of
the stationary equation into two, lower-dimensional, stationary
equations for 2×2 Dirac operators with auxiliary interactions.
Performing Darboux transformation of the reduced Dirac oper-
ators made it possible to construct the new 4×4 Hamiltonians
describing distortion scattering of spin-orbit interaction. We
discussed in detail this class of form-preserving Darboux trans-
formations. We found Darboux partners of a one-dimensional
2× 2 Dirac Hamiltonian with constant matrix potential (i.e. a
slight generalization of our previous results in [Jak4]). Then we
used them in construction of Darboux transformed 4×4 Dirac
operator describing spin-orbit interaction or distortion scatter-
ing. We worked with the systems with translational symmetry.
The construction provided results for the normal incidence of
the particles on the barrier. The presented models were reflec-
tionless by construction. To extend applicability of our results,
we employed perturbation analysis for small nonvanishing val-
ues of the momentum parallel with the axis of translational
symmetry. We showed that the perturbation preserves bound
states and, therefore, the system could host partially disper-
sionless wave packets as defined in [Jak9]. In the last section,
we discussed issues related with the use of the non-reducible
Darboux transformations; the transformed Dirac operator is
non-hermitian. We showed that there can be strong link be-
tween hermiticity of the new operator and its reducibility.
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[Jak17] Coupled system of Dirac fermions with different Fermi
velocities via composites of SUSY operators
Supersymmetric quantum mechanics provides the framework
for construction of the new solvable models from the know
ones. Its backbone is Darboux transformation, a differential
operator that intertwines Hamiltonians of the new and the old
system. Darboux (supersymmetric) transformation together
with the new and the old Hamiltonian can be used to de-
fine (nonlinear) superalgebra that consists of supersymmetric
Hamiltonian and two supercharges. In the work, we showed
that the supersymmetric Hamiltonian and one of the super-
charges can be used to compose the new extended Hamilto-
nian. We showed that the new operator can be interpreted as
the energy operator of the coupled system of Dirac fermions
with two different Fermi velocities. We discussed in detail spec-
tral properties of the composite Hamiltonian, we showed that
they differ substantially from the spectral characteristics of the
original systems, e.g. by level crossing of energy level or ex-
istence of bound states in the continuum. We illustrated the
construction on two examples of the reflectionless and massive
Pöschl-Teller models.
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[Jak6] V. Jakubský and D. Krejčǐŕık, “Qualitative analysis of
trapped Dirac fermions in graphene,” Annals Phys. 349, 268
(2014); erratum 353, 340 (2015).
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preserving Darboux transformations for 4×4 Dirac equations,”
Eur. Phys. J. Plus 137, 389 (2022).
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