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Summary

In the field of bounded arithmetic, we study weak formal theories of arith-
metic with close connections to propositional proof complexity and com-
putational complexity.

Syntactic classes of bounded formulas define languages that comprise
computational complexity classes such as levels of the polynomial-time
hierarchy; we may loosely associate arithmetical theories T with com-
plexity classes C such that T is capable of reasoning with concepts of
complexity C (it includes induction, comprehension, . . . for formulas cor-
responding to C), and on the other hand, the provably total computable
functions of T have complexity C. We may also associate theories of
arithmetic with propositional proof systems P : this generally means that
universal statements provable in T translate to sequences of tautologies
that have polynomial-size P -proofs, and that T proves suitable reflection
principles for P . Thus, provability in T serves as a uniform version of P .

This dissertation presents the author’s contribution to several topics
in bounded arithmetic.

The first part (Chapters I and II) develops a framework for formaliza-
tion of approximate counting (i.e., determination of cardinalities of defin-
able bounded sets of low complexity, up to a small error, either additive
or multiplicative) in theories of bounded arithmetic, using the surjective
weak pigeonhole principle. (In contrast, exact counting is not possible in
bounded arithmetic because of its large computational complexity.) Appli-
cations include formalization of randomized complexity classes, and proofs
of combinatorial statements (such as the tournament principle) employing
counting or probabilistic arguments.

In Chapter III, we investigate the provability of several interconnected
algebraic and number-theoretic problems in suitable theories of arithmetic:
the fundamental theorem of finite abelian groups, Fermat’s little theorem,
Euler’s criterion, multiplicativity of the Legendre symbol, and last but
not least, the quadratic reciprocity theorem (including the supplementary
laws). In particular, our proof of quadratic reciprocity in a theory includ-
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ing a certain counting principle modulo 2 yields a purely computational
consequence: a randomized reduction of integer factoring (as a search
problem) to a problem in the complexity class PPA. This, as well as a re-
duction of factoring to a class corresponding to WPHP, and similar results
about computation of square roots modulo composites, form the content
of Chapter IV.

In the next part (Chapters V and VI), we formalize a variant of
the Ajtai–Komlós–Szemerédi sorting network in a certain theoryVNC 1

∗—
developed for this purpose—that corresponds to slightly nonuniform NC1.
As a consequence, we obtain the polynomial equivalence of the monotone
sequent calculus MLK with the usual sequent calculus LK (or Frege sys-
tems), modulo an assumption on the provability of existence of expanders
inVNC 1

∗.
The last part of the dissertation investigates the power of the the-

ory VTC 0 corresponding to the class TC0, which can be thought of as
the complexity of elementary arithmetic operations; specifically, we ask if
VTC 0 proves any nontrivial induction schemata for binary integers, such
as open induction (IOpen). This is closely related to the computational
problem of root finding for constant-degree polynomials. We establish that
the latter can be done in TC0 in Chapter VII, using complex-analytic
methods. In Chapter VIII, we prove IOpen, and even induction and min-
imization for Σb

0 formulas in Buss’s language, in VTC 0 augmented with
the iterated multiplication axiom IMUL.
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1 Introduction

This dissertation comprises eight published papers of the author, each
constituting one chapter (see p. 25). They have been lightly edited to
unify the formatting, but otherwise left identical to the versions that were
accepted for publication.

The central subject of this dissertation—bounded arithmetic—arose
from the confluence of two seemingly disparate fields: first-order theories
of arithmetic, and complexity theory (propositional proof complexity and
computational complexity).

The best-known first-order theory of arithmetic is the Peano arithmetic
(PA), an elegant and powerful axiomatic system conceived as a first-order
approximation to the original second-order axioms of Peano [52]. The
most important axiom of PA is the schema of induction for all formulas.
In theories of bounded arithmetic, induction is restricted to smaller classes
of formulas, typically only allowing bounded quantifiers.

The prototypical theory of bounded arithmetic, now called I∆0, was
introduced by Parikh [47]: it includes induction for all bounded formulas in
the basic language of arithmetic {0, S,+, ·,≤}. Paris and Wilkie [48, 49]
introduced its extension I∆0 + Ω1 with an axiom postulating that the
function xlog x is total; Buss [12] reformulated it as the theory T2 in a
richer language, which allowed him to define its subtheories T i

2 and Si
2 with

induction restricted even more. These form one of the two most commonly
used frameworks for bounded arithmetical theories; the other framework
are the two-sorted (“second-order”) theories, originally also introduced by
Buss [12], but now usually presented in a considerably simpler formalism
due to Zambella [63].

Bounded formulas in the language of Buss’s theories define exactly the
predicates computable in the polynomial-time hierarchy (PH). Better, we
can stratify the class of bounded formulas into the Σb

i hierarchy based on
the number of alternations of bounded quantifiers, and then Σb

i -definable
predicates coincide with the level ΣP

i of PH; in particular, NP predicates
are exactly those definable by Σb

1 formulas. Going to first-order theories,
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Parikh’s theorem [47] ensures that in any reasonable bounded arithmeti-
cal theory, the provably total Σ1-definable functions (search problems) are
bounded by a term of the language, i.e., a poly-time function in the case
of Buss’s theories. More precisely, Buss’s witnessing theorem shows that
the provably total NP search problems (i.e., ∀Σb

1 or ∀∃Σb
1 consequences)

of S1
2 are poly-time computable (FP), and more generally, the ∀∃Σb

i con-
sequences of Si

2 are witnessed by FPΣP
i−1 functions.

This leads to close connections between bounded arithmetic and com-
putational complexity theory. Various questions about bounded arith-
metical theories are related to questions in complexity theory (often, the
former are “more constructive versions” of the latter). One of the most
fundamental examples is the problem of finite axiomatizability of Buss’s
theory T2 (or equivalently, the collapse of the T i

2 hierarchy), which implies
collapse of the polynomial hierarchy PH, and is in fact equivalent to prov-
ability of the collapse of PH in T2 (Krajíček, Pudlák, and Takeuti [39] and
follow-up results, including II.4.6–8 in the present dissertation). Witness-
ing theorems reduce questions about provability in theories of bounded
arithmetic to questions about the complexity of search problems, with
some loss of information. For this reason, a lot of ongoing research is in-
vested in characterization of provably total NP search problems of various
fragments of bounded arithmetic, which determine their ∀Σb

1 consequences
modulo true universal statements.

Viewed from another angle (going back to Parikh [47] and Cook [22]),
we may interpret the fact that theories of bounded arithmetic include in-
duction and related schemata (comprehension, minimization, . . . ) only
for formulas expressing computable predicates of moderate complexity by
considering them as modelling feasible reasoning : we ask what we can
prove while referring only to efficiently computable properties and ob-
jects. In particular, when discussing formalization of complexity classes
in arithmetic, or specific low-complexity predicates or functions, it is a
fundamental question which of their properties can be proved using only
reasoning with entities not exceeding their own complexity. One way of
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making this notion precise is to equate it with provability in an arithmeti-
cal theory corresponding to the relevant complexity class.

In propositional proof complexity, we study proof systems for (usually)
classical propositional logic, which are specified by a poly-time verifiable
notion of proofs such that formulas that have proofs are exactly the tau-
tologies. The list of common proof systems includes Frege (Hilbert) calculi,
sequent calculi, resolution, or algebraic proof systems such as the polyno-
mial calculus. We are interested in the complexity of proofs according to
various complexity measures, the most basic being the length of proofs.

The connection of bounded arithmetic to propositional proof complex-
ity, originating in Cook [22] and Paris and Wilkie [49], is based on the idea
that a bounded formula (of suitable complexity) can be translated into a
sequence of propositional formulas that express its truth when restricted
to inputs of a given length; if the original formula is universally valid,
its translations are tautologies, and if it is provable in a bounded arith-
metical theory T , then its translations have polynomial-time constructible
proofs in a propositional proof system P depending on the theory (e.g.,
Cook [22] shows this with T = PV and P being extended resolution, or
equivalently, extended Frege). If the pairing of T with P is right, the
connection goes both ways: T proves the soundness of P (in the form of
reflection principles), and in particular, it proves “if propositional trans-
lations of φ have P -proofs, then φ”. Moreover, any proof system whose
soundness is provable in T is p-simulated by P .

This correspondence is sometimes expressed by saying that theories of
bounded arithmetic are uniform versions of propositional proof systems.
It is an important tool for showing consistency (unprovability) results for
arithmetical theories by proving superpolynomial lower bounds on the
corresponding propositional proof systems; in the other direction, it can
be used to construct transparent short proofs of combinatorial tautologies.
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2 Our contribution

The present dissertation investigates several themes in the subject of
bounded arithmetic and related complexity theory. While each chapter
was published as a separate paper, they are connected in various ways.
We will now give brief introductions of the individual topics.

2.1 Approximate counting

The first two chapters (originally published as [D1, D2]) are devoted to
approximate counting in bounded arithmetic. Here, counting refers to de-
termination of the cardinality of a finite set. We consider definable sets
X ⊆ [0, a) for some a, and we would like to define the cardinality |X| such
that we can manipulate it in the theory; this can be useful for formaliza-
tion of counting arguments or probabilistic arguments in combinatorics,
complexity theory, number theory, etc., and for presentation of random-
ized algorithms.

Weak fragments of bounded arithmetic (PV1, or even VTC 0) have a
well-behaved definition of counting for sets explicitly encoded by sequences
of elements. Strong fragments of arithmetic prove comprehension princi-
ples ensuring that a bounded definable set of suitable complexity can be
arranged into a sequence, and therefore counted: e.g., I∆0 + EXP proves
this for ∆0(exp) sets. However, this set-up essentially requires the presence
of exponentiation, as subsets of [0, a) need more than a bits to encode.
In fact, Toda’s theorem [60] implies that exact counting of polynomial-
time bounded sets is not possible to define in bounded arithmetic in any
reasonable way, unless the polynomial-time hierarchy PH (and even the
whole counting hierarchy CH) collapses, which is quite unlikely, and it is
outright disprovable for “relativized” variants of bounded arithmetic with
an uninterpreted new predicate. Similar arguments apply also to modular
counting, i.e., determination of |X| modulo a fixed constant m.

This leaves open the possibility of defining an approximation of |X|,
up to a polynomially small error ε. Here, we may consider either additive
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error, i.e., we want to compute s such that |X|− εa ≤ s ≤ |X|+ εa, where
X ⊆ [0, a), or multiplicative error, in which case we want s such that
|X|(1 − ε) ≤ s ≤ |X|(1 + ε). (Counting with multiplicative error is more
precise than with additive error, especially when X is rather sparse.) This
can be accomplished within the polynomial-time hierarchy, hence there is
no complexity obstacle to formalization in bounded arithmetic.

The pigeonhole principle PHPb
a(f) for b > a asserts that a function

f : [0, b) → [0, a) cannot be injective; this amounts to a “passive” form of
counting. We speak of the weak pigeonhole principle when b is “much”
larger than a (the exact meaning depends on the context, such as b = a2

or b = 2a; below, we will take b = a(1 + 1/|a|), which corresponds to
counting with polynomially small error ε ≈ 1/|a|). It turns out that the
surjective (or dual) weak pigeonhole principle is more useful for formaliza-
tion of counting arguments than the usual (injective) principle: for a < b,
sPHPa

b (f) says that f : [0, a) → [0, b) cannot be onto, and sWPHP(Φ)

denotes ∀a sPHPa
a(1+1/|a|) for each f ∈ Φ (e.g., Φ might be the set of all

PV -functions). For clarity, we will denote the original form of the weak
pigeonhole principle as iWPHP rather than WPHP to distinguish it from
sWPHP .

In bounded arithmetic, PHP is as intractable as other forms of ex-
act counting; in particular, the relativized theory T2(α) does not prove
PHP(α) [1, 8]. But crucially, it does prove the weak pigeonhole principle,
as shown by Paris, Wilkie, and Woods [50]; more precisely, for i ≥ 1,
T i+1

2 (α) proves iWPHP(Σb
i (α)) and sWPHP(Σb

i (α)) by Maciel, Pitassi,
and Woods [41]. Besides being an interesting counting principle in its own
right, WPHP can be used to simulate certain counting arguments in T2:
the very reason it was introduced in [50] was to prove the unboundedness
of primes, and for another important example, Pudlák [54] used it to prove
Ramsey’s theorem.

A close connection of sWPHP to counting or probabilistic arguments is
suggested byWilkie’s witnessing theorem (first published in Krajíček [37]):
the NP-search problems provably total in S1

2 + sWPHP(PV ) are included
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among TFZPP. In contrast, witnessing iWPHP(PV ) is computation-
ally hard: e.g., it is at least as hard as integer factoring [31]. Strictly
speaking, sWPHP(PV ) and iWPHP(PV ) are (presumably) incompa-
rable; nevertheless, sWPHP(PV ) is weaker than iWPHP(PV ) in that
S1

2 + sWPHP(PV ) is ∀Σb
1-conservative over S1

2 + iWPHP(PV ).
As we already mentioned, some counting arguments were formalized in

bounded arithmetic using variants of WPHP for example in [50, 54], but
these papers rely on ingenious ad hoc constructions of counting functions;
they do not give any hint how to turn this into a general method. As a
case in point, the tournament principle (due to Erdős [27]) has a simple
counting proof analogous to a counting proof of Ramsey’s theorem, but
it stood open for a long time whether it can be proved in a bounded
arithmetic (this problem originated in Krajíček, Pudlák, and Takeuti [39];
it was stated explicitly in Clote and Krajíček [20]).

The main goal of Chapters I and II is to develop a systematic frame-
work for formalization of approximate counting and probabilistic argu-
ments in bounded arithmetic using sWPHP , including a toolbox of basic
facts.

Chapter I (originally [D1]) is devoted to approximate counting with
additive error, working in the theory PV1 + sWPHP(PV ), also called
APC1 in [15]. (It partially builds on [30], not included in this dissertation.)
The basic idea is that if X,Y ⊆ [0, 2n) are sets defined by Boolean circuits,
we witness that |X| ≤ |Y | by the existence of a circuit that computes a
surjection Y � X, but we weaken it in two ways to make construction of
such circuits feasible: first, we actually consider surjections Y × [0, v) �
X × [0, v) for some v > 0, and second, instead of Y , we take its disjoint
union with [0, ε2n) for some rational ε > 0. We denote the resulting
concept by X �ε Y , spelled out as the size of X is approximately less
than the size of Y with error ε. We also write X ≈ε Y if X �ε Y and
Y �ε X.

The crucial result that makes this definition well behaved is that APC1

proves that any set “has a size”: that is, given X ⊆ [0, 2n) as above, and
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ε at least inverse polynomial in n, there exists s ≤ 2n such that X ≈ε

[0, s); this result comes out from formalization of the Nisan–Wigderson
pseudorandom generator [45].

Besides basic consequences of the definition (such as monotonicity), we
show that it behaves in the expected way with respect to disjoint unions
and Cartesian products (the latter generalizes to a form of the averaging
principle). For more advanced counting arguments, we prove a form of
the inclusion–exclusion principle and a Chernoff–Hoeffding bound.

In the second half of Chapter I, we apply this machinery to develop
the theory of various randomized complexity classes in APC1: specifically,
we look at the classes of FRP and TFRP search problems, BPP lan-
guages and promise problems, APP real-valued functions (introduced by
Kabanets, Rackoff, and Cook [35]), MA languages and promise problems,
and—upgrading the theory by one level of the hierarchy to APC2—the
classes of AM languages and promise problems. For each class, we indicate
how to formally define algorithms from the class in bounded arithmetic
using the approximate counting framework, and we prove basic properties
of the class in the theory, such as amplification of the success probabil-
ity, simulation of randomness by nonuniformity, and standard inclusions
between the classes. (Along the way, we solve an open problem from [35]
on the recursive enumerability of APP, and find a proof of success am-
plification for APP which is much simpler than the original one as given
in [35].)

Chapter II (originally published as [D2]) is devoted to approximate
counting with multiplicative error. We work in T 1

2 + sWPHP(PV2), called
APC2 in [15]. The basic idea is taken from Sipser’s coding lemma [59],
which employs a universal family of linear hashing functions to distinguish
sets X of size ≤ s from sets of size Ω(s log s). We consider here bounded
sets X definable by Σb

1-formulas (i.e., NP/poly). In order to get the error
down to εs for a polynomially small ε, we apply Sipser’s definition to a
suitable Cartesian power Xc in place of X itself; we write X -ε s for the
resulting notion (note the difference from �ε). The key result is that, up
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to relative error ε, X -ε s is equivalent to the existence of PV2-surjections
sc � Xc for some c: we prove this in APC2 by formalization of Sipser’s
lemma, using the machinery from Chapter I for probabilistic reasoning.

Again, we provide a toolbox showing that the definition of X -ε s

interacts in the expected way with finite unions, Cartesian products, and
more generally, unions of parameterized families, i.e., averaging principles.
We also prove that any bounded Σb

1-definable X has an “almost bijective”
increasing enumeration by a PV2-function, in a suitable sense.

As applications, we show how the general framework can be used to
formalize various counting arguments in combinatorics and complexity
theory. We prove Ramsey’s theorem (using a much simpler proof than
Pudlák [54]) and the tournament principle (solving the open problem
from [20]). In fact, we prove a multi-dimensional generalization of the
tournament principle with several applications: first, we use it to directly
formalize in bounded arithmetic the argument from [39] relating collapse
of the T2 hierarchy to collapse of PH, which improves the previously known
results in this area [39, 13, 63, 23]; second, we use it to formalize in APC2

the result SP
2 ⊆ ZPPNP due to Cai [17]. We also prove that any interval

in a model of T2 admits a nontrivial approximate Euler characteristic in
the sense of Krajíček [38], and we prove in APC2 that graph isomorphism
is in coAM.

Let us mention follow-up work. Buss, Kołodziejczyk, and Thapen [15],
besides introducing the names APC1 and APC2, prove ∀Σb

1-separations of
several fragments of APC2 from APC2 itself and from T 2

2 in the relativized
setting. (See also Atserias and Thapen [7].) The separations are based on
the fact that (using the approximate counting machinery and the tourna-
ment principle) APC2 proves the ordering principle, which states that any
partial order on a nonempty bounded domain has a minimal element.

Using our approximate counting, Buss, Kołodziejczyk, and Zdanowski
[16] formalize Toda’s theorem on the collapse of Modp PH to BP · ⊕pP

in bounded arithmetic relativized with a ⊕pP oracle, specifically showing
that APC⊕pP

2 = T2(⊕pP). Using the Paris–Wilkie translation, they obtain
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a collapse for propositional proof systems: the constant-depth Frege sys-
tem with ⊕p gates is quasipolynomially simulated by its depth 3 fragment
(using

∧
of ⊕p of polylogarithmic

∧
of literals). We recall that proving

superpolynomial lower bounds for constant-depth Frege with ⊕p gates is
one of the longest-standing open problems in proof complexity.

Pich [53] formalizes the exponential PCP theorem in APC1 using
our approximate counting, and proceeds to prove the full PCP theorem
(scaled logarithmically down, whence the weaker theory) in PV1. Müller
and Pich [43] employ approximate counting to formalize in APC1 sev-
eral prominent super-polynomial circuit lower bounds: AC0 lower bounds
for Parity, AC0[p] lower bounds for Modq, and monotone lower bounds
for Clique. They also formalize the Razborov–Rudich [56] theorem on
natural proofs.

2.2 Abelian groups, quadratic residues, and factoring

Chapter III (originally published as [D3]) is devoted to formalization of
several inter-related problems from modular arithmetic, elementary num-
ber theory, and algebra in suitable fragments of bounded arithmetic. As
a follow-up, some of these results are used in Chapter IV (originally pub-
lished as [D4]) to draw consequences in pure computational complexity
that are not a priori connected to bounded arithmetic, specifically about
the complexity of integer factoring.

One motivating problem (still unresolved) for Chapter III is whether
the bounded arithmetic T2 proves Fermat’s little theorem (FLT ): ap ≡
a (mod p) for all a and prime p. This basic fact admits a number of
elementary proofs, but all seem to require exact counting or exponential-
size sums or objects, unavailable in bounded arithmetic. On the other
hand, there is no evidence that it is really hard. More generally, we may
ask about the structure of the multiplicative groups F×p for prime p. FLT
asserts that these groups have exponent p−1; another important property
whose provability in T2 is open is that these groups are cyclic. Cyclicity
and FLT together are equivalent over S1

2 + iWPHP(PV ) to the statement
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that primes have Pratt’s primality certificates, making primality Σb
1.

Another elementary principle related to FLT is Euler’s criterion, stat-
ing that the Legendre symbol, defined for integers a and odd primes p
by

(
a

p

)
=


1 if p - a and a is a quadratic residue modulo p,

−1 if p - a and a is a quadratic nonresidue modulo p,

0 if p | a,

equals a(p−1)/2 (mod p). Euler’s criterion implies FLT, and we may ask
how much stronger it is.

This brings us to properties of the Legendre symbol (a|p). The most
fundamental are its multiplicativity (implied by Euler’s criterion), and the
celebrated quadratic reciprocity theorem (QRT )(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4,

for odd primes p 6= q, along with the supplementary laws (−1|p) =

(−1)(p−1)/2, (2|p) = (−1)(p2−1)/8. These properties also imply the corre-
sponding statements for the Jacobi symbol (a|n), extending the Legendre
symbol to all odd n > 0 by completely multiplicativity; one consequence
is that it leads to simple polynomial-time algorithms for the Jacobi, and
therefore Legendre, symbol.

QRT was originally proved by Gauss, and until today, well over 300
proofs (not all essentially different) were published; cf. Lemmermeyer [40].
In the context of weak theories of arithmetic, Cornaros [24] proved QRT
in IE2

∗ , and Berarducci and Intrigila [10] proved the supplementary laws
in I∆0 extended with certain modular counting principles. D’Aquino and
Macintyre [25, 26] developed the basic theory of quadratic forms in I∆0 +

Ω1 with a vision of eventually formalizing a proof of QRT along the lines
of Gauss’s second proof, but so far this did not materialize.

We tackle the problems above in Chapter III as follows. As a first
step towards clarifying the structure of F×p , we look at the structure of
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arbitrary finite abelian groups (more precisely, Σb
1-definable groups with

a bounded domain): we prove the fundamental theorem that any such
group is a direct sum of cyclic groups in the theory S2

2 + iWPHP(Σb
1).

Returning to Fermat’s little theorem, if p is a prime, then F×p is a group
with domain [1, p); by the structure theorem, there is an isomorphism
f : F×p → G =

⊕
i<k C(peii ) (defined by a PV -function) for some sequence

〈peii : i < k〉 of prime powers. Here, G is a group with domain [0, a) where
a =

∏
i p

ei
i , and it has exponent a, thus so does F×p . The FLT would follow

if a = p−1. The weak pigeonhole principle applied to f ensures that a ≈ p,
and we know that a is even, but other than that, it seems quite difficult
to rule out that, say, a = p+ 1, in which case the FLT spectacularly fails.
Thus, we only obtain a proof of FLT if we add to S2

2 + iWPHP(PV ) the
strong pigeonhole principle PHP(PV ), which is likely not provable in T2.
All in all, this argument seems to suggest that FLT is not provable in T2,
but the evidence is very weak.

Concerning the cyclicity of F×p , the structure theorem implies (over
S2

2 + iWPHP(PV )) that it is equivalent to there not being too many qth
roots of unity in Fp for any prime q 6= p. More precisely, we obtain an
interesting dichotomy: either F×p is cyclic, and for any prime q 6= p, [0, q)

PV -surjects onto {x ∈ Fp : xq = 1}; or F×p is not cyclic, and there exists
a prime q 6= p such that [0, q2) PV -injects into {x ∈ Fp : xq = 1}. Thus,
one way to prove the cyclicity of F×p in bounded arithmetic might be to
formalize the principle that a degree-q sparse polynomial (here, xq − 1)
may only have at most q roots in a finite field, in the sense of approximate
counting. Usual proofs of this fact require the existence of exponentially
large objects.

Next, we look at Euler’s criterion. We first show that the Legendre
symbol (−|p) is multiplicative whenever F×p is a torsion group (this im-
proves the result of Berarducci and Intrigila [10] on its being provable from
iWPHP(PV )). We use this to show that Euler’s criterion is equivalent
over S1

2 to the conjunction of FLT with the statement ∃a a(p−1)/2 ≡ −1

(mod p). In particular, Euler’s criterion is provable in S2
2 +iWPHP(PV )+
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PHP(PV ). Observe that, assuming FLT, the assertion ∃a a(p−1)/2 ≡ −1

(mod p) amounts to the sparse polynomial x(p−1)/2 − 1 having less than
p− 1 roots, hence we are in a similar situation as with the cyclicity of F×p .

The last section of Chapter III is devoted to quadratic reciprocity.
Our starting point is the observation that elementary proofs of QRT of-
ten distinctly involve some form of counting modulo 2; cf. also Berarducci
and Intrigila’s above-mentioned proof of the supplementary laws using
counting modulo 4 and 8. This suggests that we should look at bounded
arithmetic extended with some form of counting mod 2. The weakest mod-
ular counting principle we thought of expresses that we cannot partition
[0, 2a + 1) into a disjoint union of two-element sets, where the partition
is represented by a PV -function f that maps each element to its partner.
In other words, f is a fixpoint-free involution. Thus, our counting prin-
ciple Count2(PV ) states that every involution on [0, 2a+ 1) defined by a
PV -function has a fixpoint. Interestingly, this principle was used outside
bounded arithmetic in slick proofs of Fermat’s theorem on sums of two
squares (related to the first supplementary law of QRT) by Heath-Brown
[28] and Zagier [62].

We find a short proof of QRT (as well as the supplementary laws, and
multiplicativity of the Legendre symbol) using only simple manipulations
of involutions, which can be formalized in PV1 + Count2(PV ) or I∆0 +

Count2(∆0). The proof is loosely based on Gauss’s third proof, but we
replace the key Gauss’s lemma by a formulation with explicit involutions.
Strengthening the base theory from PV1 to S1

2 , we can also prove the
corresponding statements about the Jacobi symbol, leading to its being
polynomial-time computable.

This brings us to Chapter IV, which is devoted to the computational
complexity of integer factoring, and the closely related problem of com-
puting modular square roots. Factoring is one of the most fundamental
problems in mathematical computation, going back to classical antiquity.
In modern times, it has significant applications in cryptography: various
protocols rely on the computational hardness of factoring.

16



Factoring is closely related to the problem of computing square roots
modulo a given integer. There are randomized poly-time algorithms for
computation of square roots modulo primes; using Hensel’s lifting and the
Chinese remainder theorem, this gives a randomized reduction of square
roots with general moduli to factoring. One can also give randomized
reductions in the opposite direction.

We study the complexity of factoring as a total NP-search problem,
which is arguably a more natural setting than as a decision problem. Pa-
padimitriou [46] introduced several classes of NP-search problems that are
based on “combinatorial proofs” of totality: in particular, a class PPP cor-
responding to the pigeonhole principle, and several classes based on “par-
ity arguments”—we are interested here in PPA, whose defining complete
problem is, given a circuit representing an undirected graph of degree 2,
and a vertex of degree 1, find another such vertex. Papadimitriou posed
the question whether Factoring belongs to some of his classes. The
first progress on this problem was made by Buresh-Oppenheim [11], who
proved that factoring of integers of a certain special form is in PPA, and
has a randomized reduction to a PPP problem.

We prove in Chapter IV that the general Factoring problem has a
randomized reduction to a PPA problem, and to a problem in the sub-
class PWPP of PPP corresponding to iWPHP . We can derandomize the
reductions under the assumption of the Riemann hypothesis for quadratic
Dirichlet L-functions. Moreover, PPA unconditionally contains the prob-
lems of computing modular square roots, and finding square nonresidues.

Our basic strategy is to apply a witnessing theorem to the results of
Chapter III on provability of QRT. It is easy to show that the provably
total NP-search problems of S1

2 +Count2(PV ) are in PPA. Since the the-
ory proves that the Jacobi symbol (a|n) is computable by a PV -function,
say J(a, n), it also proves the ∀Σb

1 sentence “if J(a, n) = 1, then a is a
quadratic residue mod n, unless n is composite”. Thus, PPA contains the
problem FacRoot: given a, n such that (a|n) = 1, find a square root of
a modulo n, or a proper divisor of n.
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We obtain an easy randomized reduction of Factoring to FacRoot
by choosing a at random. We also show that FacRoot can be used
(deterministically) to compute square roots mod n. While our reduction
of general factoring to PPA is randomized, we exhibit special cases that
are in PPA deterministically, generalizing the original result of [11].

In order to make the original paper self-contained and accessible to a
wider audience, we include a direct combinatorial proof of FacRoot ∈
PPA, based on a rather complicated dynamic programming algorithm.
We believe the bounded arithmetic proof is much more transparent; this
seems to be a not-so-common case where witnessing applied to a bounded
arithmetic proof yields a genuinely new algorithm.

We also present a randomized reduction of Factoring to PWPP

based on the proof of multiplicativity of the Legendre symbol in PV1 +

iWPHP(PV ).

2.3 Sorting networks and monotone sequent calculus

The material in Chapters V and VI (originally published as [D5, D6]) is
motivated by a problem from propositional proof complexity. The Frege
system is one of the most fundamental proof systems; it is quite robust
in that it can be presented in a variety of ways which turn out all to
be p-equivalent: as a system operating with formulas using a finite set
of schematic axioms and rules, as a natural deduction system, or as a
Gentzen-style sequent calculus LK .

An interesting variant of the sequent calculus is the monotone sequent
calculus MLK (introduced by Pudlák [55]): it operates with two-sided
sequents that only use monotone formulas, i.e., formulas using the con-
nectives ∧, ∨, ⊥, and >; the calculus includes the usual derivation rules
of LK (including the cut rule) pertaining to the restricted language. A
natural question to ask (dubbed the Think Positively Conjecture by At-
serias [4]) is whether MLK is p-equivalent to LK , in the sense that given
an LK proof of a monotone sequent, we can construct its MLK proof in
polynomial time. MLK is also included in the intuitionistic sequent cal-
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culus LJ , and we can similarly ask if LJ p-simulates LK for monotone
sequents.

Atserias, Galesi, and Gavaldà [5] proved that MLK has quasipolyno-
mial proofs of the pigeonhole principle, and then Atserias, Galesi, and
Pudlák [6] proved that in general, MLK (and therefore LJ ) quasipoly-
nomially simulates LK for all monotone sequents. A question remained
whether we can improve this simulation to polynomial. For LJ , the ques-
tion was resolved by Jeřábek [32], who presented a simple p-simulation of
LK -proofs of monotone sequents in LJ .

For MLK itself, the basic idea of [6] was to use the monotone threshold
(slice) functions

θnk (x0, . . . , xn−1) =

{
1 if

∣∣{i < n : xi = 1}
∣∣ ≥ k,

0 otherwise.

If we assume that exactly k of the variables x0, . . . , xn−1 are true, we can
express ¬xi by the monotone function θnk (x0, . . . , xi−1,⊥, xi+1, . . . , xn−1),
which can be used to make formulas in a proof monotone. There is a
straightforward construction of quasipolynomial-size monotone formulas
for θnk , and this allowed [6] to prove a quasipolynomial simulation of LK
by MLK . They observed that if we could find a polynomial construction
of monotone formulas for θnk such that certain basic properties of these
formulas have polynomial MLK proofs, we would obtain a polynomial
simulation of LK by MLK . But surprisingly, they also showed that the
same conclusion holds if we only assume that the properties of θnk have
polynomial LK proofs, using a sort of boot-strapping argument.

Polynomial-size monotone formulas for θnk do, in fact, exist: first, Aj-
tai, Komlós, and Szemerédi [3, 2] proved that there are sorting networks
of depth O(log n), which also gives monotone formulas of depth O(log n)

for θnk , and second, Valiant [61] gave a simple probabilistic construction
of such formulas. However, in both cases it’s quite unclear how to prove
properties of the formulas efficiently in LK : Valiant’s construction is ran-
domized, hence it does not even give a uniformly constructible sequence
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of θnk formulas; the Ajtai–Komlós–Szemerédi (AKS) sorting network is ex-
plicit, but it is immensely complicated, and it relies on an expander graph
construction, whose formalization is a separate difficult issue on its own.

The goal of Chapters V and VI is to formalize the AKS sorting net-
work proper (i.e., minus the expander construction) in a suitable theory of
bounded arithmetic, which then yields monotone θnk formulas whose defin-
ing properties have polytime-constructible LK proofs by means of propo-
sitional translation, modulo an assumption that the theory can prove the
existence of the necessary expanders.

The most natural theory that translates to LK (Frege) is VNC 1 of
Cook and Morioka [21], which corresponds to fully uniform NC1 (i.e.,
ALOGTIME = UE-uniform NC1). As such, the theory can prove that
we can evaluate O(log n)-depth (bounded fan-in) Boolean circuits that
are presented by their extended connection language (ecl), as defined by
Ruzzo [57]. Unfortunately, the intricate construction of the AKS network
does not seem to lend itself to an efficient description of the ecl; we only
have the direct connection language (dcl) available, precluding formaliza-
tion inVNC 1.

In order to solve this problem, we have to find a suitable theory ex-
tendingVNC 1 where the formalization can go through, but such that it
still translates to polynomial-size Frege proofs. This is the purpose of
Chapter V. We introduce a theoryVNC 1

∗, axiomatized using a derivation
rule that ensures that we can evaluate any O(log n)-depth circuit whose
dcl is definable by a formula without second-order parameters which is
VNC 1

∗-provably ∆B
1 . We also consider its universal conservative extension

VNC 1
∗, whose terms correspond to the ΣB

1 -definable functions of VNC 1
∗.

We develop both theories and establish their basic properties. In par-
ticular, we show that the provably total computable functions of VNC 1

∗
form a class that includes fully uniform NC1 functions, and is included
among L-uniform NC1 functions, and crucially, we establish that proposi-
tional translations of ∀Σb

0 theorems ofVNC 1
∗ (even in the richer language

ofVNC 1
∗) have L-uniform polynomial-size LK proofs.
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In Chapter VI, we proceed to formalize the AKS sorting network (or
rather, the somewhat simplified network by Paterson [51]) inVNC 1

∗. We
modified some inessential details of the construction to facilitate the for-
malization, and we stream-lined the presentation. The formalization is
done under an assumption thatVNC 1

∗ can prove the existence of suitable
expander graphs.

We then apply translation of bounded arithmetic to propositional logic:
the VNC 1

∗-function that defines the AKS network translates to an L-
uniform sequence of monotone O(log n)-depth formulas for the θnk func-
tions, and ourVNC 1

∗ proof that the network correctly sorts translates to
L-uniform LK proofs establishing the defining properties of the θnk formu-
las. Thus, all in all, we obtain a proof that MLK polynomially simulates
LK on monotone sequents (the Think Positively Conjecture), modulo our
assumption on the existence of expanders inVNC 1

∗.
This assumption was subsequently proved (even in VNC 1) by Buss,

Kabanets, Kolokolova, and Koucký [14], hence the p-simulation of LK by
MLK is now fully settled. (A rudimentary form of some of their results [36]
circulated already before our work.) By results of Jeřábek [33], this also
extends to a p-simulation of LK (on arbitrary sequents) by the proof
system MCLK which allows arbitrary sequents in the proof, but restricts
the cut rule to monotone cut formulas.

It remains an open problem if tree-like MLK p-simulates MLK (or
equivalently, if tree-like MCLK p-simulates LK ).

2.4 Induction in TC0 theories and root finding

The last two chapters of this dissertation investigate the power of the-
ories corresponding to (DLOGTIME-uniform) TC0. The class TC0 has
fundamental significance in that it describes the complexity of elemen-
tary arithmetic operations: the basic integer operations +, −, ·, /, and
the < relation, are computable in TC0; while +, −, and < are even in
AC0 ⊆ TC0, the operations · and / are TC0-complete under AC0 Tur-
ing reductions. We can also compute in TC0 iterated addition

∑
i<nXi
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and iterated multiplication
∏

i<nXi. Apart from Z, we can also do the
corresponding operations in Q, Q(i), or other number fields, as well as
structures such as polynomial rings. Using iterated addition and multi-
plication, we can compute approximations of analytic functions given by
sufficiently nice power series, such as sin, arctan, exp, or log.

We stress that the TC0-computability of integer division and iter-
ated multiplication (and other above-mentioned functions that depend
on these) is a quite nontrivial result of Hesse, Allender, and Barring-
ton [29] (building on Beame, Cook, and Hoover [9], and Chiu, Davida,
and Litow [18]).

The basic theory of bounded arithmetic corresponding to TC0 is the
two-sorted theory VTC 0 introduced by Nguyen and Cook [44]. We may
interpret provability in VTC 0 as a formalization of feasible reasoning about
elementary arithmetic operations +, ·, <: what can we prove about them
while only referring to concepts that do not exceed their complexity?
(Note that we are concerned here with operations on binary integers, i.e.,
the second sort of VTC 0; operations on unary integers have much lower
complexity.) More precisely, we ask what sentences in the basic language
of arithmetic {+, ·, <} are provable in VTC 0 if we interpret them over the
binary integer sort. (This is a particular case of the RSUV isomorphism.)

We are particularly interested if VTC 0 proves any nontrivial instances
of induction for binary integers: specifically, let us ask whether VTC 0 (or
some extension thereof that still corresponds to TC0) proves open (i.e.,
quantifier-free) induction, that is, the RSUV -translation of the theory
IOpen introduced by Shepherdson [58].

The provability of IOpen in VTC 0, even extended with true universal
(i.e., ∀ΣB

0 ) sentences, has nontrivial computational consequences: if f(X)

is any polynomial (with integer coefficients given by second-sort param-
eters), induction for the formula f(X) < 0 is a ∀ΣB

1 statement, where
the witness to the existential quantifier solves the following search prob-
lem: given a (fixed-degree) polynomial f and an integer X > 0 such that
f(0) < 0 ≤ f(X), find an integer Y < X such that f(Y ) < 0 ≤ f(Y + 1).
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If this instance of induction is provable in VTC 0 + Th∀ΣB
0

(N), the search
problem is computable by a TC0 function, which we can easily manipu-
late to obtain, for each constant d, a TC0 root approximation algorithm
for degree-d univariate polynomials: given such a polynomial f and ε > 0,
compute rational approximations within additive error ε of all real roots
of f , or even Q(i) approximations of all complex roots of f . (This is, in
fact, equivalent to provability of IOpen in VTC 0 + Th∀ΣB

0
(N).)

We tackle this computational complexity problem first: in Chapter VII
(originally published as [D7]), we prove that TC0 degree-d root approxi-
mation algorithms exist for any constant d. The argument uses tools from
complex analysis. The basic idea is that if a is “close” to a root α of a
polynomial f , then f has an analytic inverse function g on a neighbour-
hood of f(a) including 0, and g(0) = α. The coefficients of the power
series of g can be determined by the Lagrange inversion formula (LIF ),
which makes them TC0-computable, and then g(0) can be approximated
in TC0 by computing a partial sum of the power series.

The exact meaning of a being “close” to α can be quantified using the
Cauchy integral formula. Using this, we can set up a polynomial-size set
of sample points a such that each root of f is close enough to some a;
thus, locally inverting f (as explained above) near all sample points in
parallel, we obtain a TC0 algorithm that computes approximations of all
roots of f .

The provability of IOpen (and more) in a mild extension of VTC 0 is
demonstrated in Chapter VIII (originally published as [D8]). The reason
it does not go through in VTC 0 itself is that we need iterated multipli-
cation (and division) all over the place, but formalization of the Hesse,
Allender, and Barrington algorithm is a serious problem on its own that’s
mostly tangential to the question of constant-degree root finding. Thus,
we work in the theory VTC 0 +IMUL, where the IMUL axiom is a suitable
formalization of the totality of iterated integer multiplication.

Again, one idea we use is to locally invert polynomials by power series
whose coefficients are given by LIF. We can prove a suitable version of

23



LIF in VTC 0 + IMUL by direct manipulation of multinomial coefficients;
in absence of other complex-analytic tools, this allows us to formalize root
approximation for polynomials f such that, roughly speaking, the constant
coefficient of f is very small w.r.t. the remaining coefficients.

We complement this with a model-theoretic argument based on prop-
erties of valued fields. Any ordered field F , such as the fraction field of
a model M of arithmetic, carries a natural valuation; the completion F̂

of F as a valued field coincides with the Scott completion of F , which is
the largest ordered field extension of F in which F is dense. Exploiting
a criterion of Shepherdson [58], we have that M � IOpen iff F̂ is a real-
closed field. By basic properties of valued fields, one can show that F has
a real-closed completion iff its value group is divisible, its residue field is
real-closed, and F is almost henselian. In the case of F induced from a
model of VTC 0 + IMUL, the last condition follows from root approxima-
tion of polynomials with small constant coefficients that we proved earlier
using LIF.

In this way, we prove IOpen in VTC 0 + IMUL. Leveraging the argu-
ment more, we can formalize in VTC 0+IMUL a suitable version of a result
of Mantzivis [42] on the structure of sets defined by sharply bounded (Σb

0)
formulas, using root approximation for constant-degree polynomials for
the base case of atomic formulas; thus, VTC 0 + IMUL proves the RSUV

translation of induction and minimization for Σb
0 formulas in Buss’s lan-

guage (and even in certain extensions of the language).
We add that Jeřábek [34] recently succeeded to formalize a suitable ver-

sion of the Hesse–Allender–Barrington algorithm in the base TC0-theory
VTC 0, showing that VTC 0 proves IMUL. Thus, by the results of Chap-
ter VIII, the RSUV translation of Σb

0-MIN (including IOpen) is provable
in VTC 0.
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