
Akademie věd České republiky
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Slezská univerzita v Opavě
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Summary

In the present dissertation we deal with two closely interwoven subjects,

integrable systems, with integrability meant in the sense of soliton theory,

and associated structures, in particular, symmetries, conservation laws,

recursion operators and Hamiltonian structures, including some results on

the said structures for both interable and nonintegrable systems.

Namely, we present a number of results on symmetries and conservation

laws on evolution partial differential equations and systems in two inde-

pendent variables. Namely, for the Bakirov system (14) and equation (12)

we present complete descriptions of their generalized symmetries. We also

give a number of results on conservation laws for linear evolution equations

in two independent variables. For two more systems, (21) and the Sasa–

Satsuma system (22) we give their bihamiltonian representations that lead

to infinite hierarchies of commuting symmetries and integrals of motion.

We also give a new compact description for Hamiltonian structures compat-

ible with a given nondegenerate finite-dimensional Hamiltonian structure,

and present a version of this result applicable to a broad class of Hamil-

tonian structures associated with evolution systems in two independent

variables.

As far as integrable systems per se are concerned, in this dissertation

we address in a positive fashion a longstanding problem of search for inte-

grable partial differential systems in the case of four independent variables

(4D), perhaps most relevant for possible applications, especially in physics,

given that according to general relativity our spacetime has dimension four.

Namely, we present an entirely new broad class of 4D integrable systems

with Lax pairs involving contact vector fields. In particular, we show that

this class contains two infinite families of such systems, thus establishing

that there is significantly more integrable 4D systems than it was long

believed. We also present what is, to the best of our knowledge, a first

example of a 4D integrable system with an algebraic (rather than rational)

nonisospectral Lax pair.
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1 Preface

The theory of integrable systems has its roots in trying to answer a simple

and natural question: when an ordinary differential equation, or a sys-

tem of such equations, can be integrated by quadratures? An important

milestone here is the Liouville theorem [31] in classical mechanics giving a

sufficient condition for this to occur for an important class of Hamiltonian

systems that are, inter alia, of considerable significance for applications,

see e.g. [3, 9, 39].

Another great breakthrough in the field of integrability has occurred

about half a century ago with the discovery of the so-called inverse scat-

tering transform (IST) in the seminal work [20]. In this paper it was

shown that solving the Cauchy problem for the nonlinear Korteweg–de

Vries (KdV) equation, a remarkable evolutionary partial differential equa-

tion in one dependent and two independent variables satisfied, inter alia,

by a certain generating function for intersection numbers of complex curves

arising in the Witten conjecture and its proof by Kontsevich, see e.g. [44],

can, under certain conditions, be reduced to a sequence of linear problems,

and the procedure in question became known as IST. This is possible be-

cause the KdV equation can be written as a compatibility condition for an

overdetermined system of linear equations (such overdetermined systems in

the context of integrable systems are called the Lax pairs or the Lax/Lax-

type representations in honour of P.D. Lax who discovered the Lax pair

for the KdV, see e.g. [1, 16] for details). An important consequence of the

above is the construction of infinitely many explicit exact solutions of the

KdV equation – the multisoliton solutions.

Moreover, existence of the Lax pair for the KdV paved the way to con-

struction by S.P. Novikov et al. [14] of other important classes of explicit

exact solutions for this equation, namely, the quasiperiodic finite-gap solu-

tions that are inextricably related to algebraic geometry. Note that making

use of the counterparts of these solutions for the KP equation, a natural

integrable generalization of the KdV equation to the case of three inde-
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pendent variables, enabled Shiota [42] to prove the longstanding Schottky

conjecture in algebraic geometry.

Yet another notable consequence of the presence of the Lax pair is exis-

tence of infinitely many nontrivial independent local conservation laws for

the KdV equation, cf. e.g. [1] and references therein, which shows, inter

alia, that the associated dynamics is highly regular rather than chaotic.

It was quickly realized that the KdV equation is by no means an iso-

lated example – there is plenty of partial differential systems that admit

‘good’ Lax pairs from which infinite hierarchies of conservation laws can

be extracted and that are, at least in principle, amenable to the IST. In

what follows we shall refer to the partial differential systems with ‘good’

Lax pairs in the above sense as to the integrable ones. While that some

authors use the term integrable (or C-integrable) also for the systems that

can be linearized by an appropriate change of variables but in the present

dissertation we shall not do that.

Note that soliton and multisoliton solutions for KdV and many other in-

tegrable systems, as well as other types of exact solutions constructed using

the Lax pairs, like, e.g., the multi-instanton solutions for the (anti)self-dual

Yang–Mills equations obtained using the Atiyah–Drinfeld–Hitchin–Manin

construction [5], have found significant applications both in physics and

in pure mathematics, see for example Donaldson’s revolutionary works on

geometry of four-dimensional manifolds using instantons, cf. e.g. [4].

Integrable systems are well known to have a number of remarkable struc-

tures attached to them. These include Lax pairs, symmetries, conservation

laws, Poisson structures and more, see e.g. [9, 12, 28, 39]. Exploring these

structures and their properties can provide one with quite a bit of insight

into the behavior of the systems under study and their properties, be these

systems integrable or not. For one, the presence of large number of sym-

metries and/or conservation laws indicates that the system under study

has a highly constrained, and hence likely quite regular, dynamics, cf. e.g.

the discussion in [3, 9, 39].
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For example, for certain classes of partial differential systems the pres-

ence of sufficiently many symmetries of certain kind can be employed for

search and classification of integrable cases, cf. e.g. the survey [35] and

references therein, as well as for establishing nonintegrability.

The rest of the dissertation is organized as follows. Section 2 provides a

brief review of geometric approach to the study of ordinary and partial dif-

ferential systems employing the jet bundle language. Section 3 presents a

number of results on generalized symmetries, conservation laws and Hamil-

tonian structures for evolution systems. Section 4 presents two construc-

tions for important objects associated to integrable systems, namely, hi-

erarchies of commuting nonlocal symmetries and recursion operators. In

Section 5 we present a construction of a novel broad class of integrable sys-

tems in four independent variables using a new kind of Lax pairs related

to contact geometry. After that comes the list of papers constituting the

core of the dissertation, the reference list, and the reprints of the papers

constituting the said core.
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2 Preliminaries

Following mostly [26, 27, 28] (cf. also e.g. [25] and references therein) we

briefly recall here the basics of the geometric approach to partial differential

systems.

For a smooth manifoldM of dimension n and a vector bundle π : E →M

of rank N consider the bundles of k-jets πk : Jk(π) → M , k ≥ 0 with the

natural projections πk+1,k : Jk+1(π)→ Jk(π).

The manifold of infinite jets J∞(π) is then defined as the inverse limit

with respect to the above projections, and we also can define the bundles

π∞ : J∞(π) → M and π∞,k : J∞(π) → Jk(π). For any section s : M → E

of π its infinite jet j∞(s) : M → J∞(π) is a section of π∞. We have the

embeddings π∗k+1,k : C∞(Jk(π))→ C∞(Jk+1(π)), and define the algebra of

smooth functions on J∞(π) as A(π) = ∪k≥0C
∞(Jk(π)).

One important geometric structure on J∞(π) that we will need is the

Cartan distribution C: for any point θ ∈ J∞(π) we define the Cartan

plane Cθ as the tangent plane to the graph of an infinite jet passing through

this point. The said distribution is formally integrable, that is, if X and Y

are vector fields in C then the commutator [X, Y ] lies there as well. Every

Cartan plane Cθ is n-dimensional and projects isomorphically to Tπ∞(θ)M

by the differential of π∞. For this reason, any vector field Z on M can be

uniquely lifted to a vector field CZ on J∞(π). The correspondence Z 7→ CZ
is C∞(M)-linear and preserves the commutator. Moreover, π∞,∗ (CZ) = Z.

This gets us a connection known as the Cartan connection. In the stan-

dard local coordinates x1, . . . , xn, u1
α, . . . , u

N
α in J∞(π), α being symmetric

multi-index consisting of the integers 1, . . . , n, the Cartan connection is

determined by the correspondence

C :
∂

∂xi
7→ Dxi =

∂

∂xi
+
∑
α,A

uAαi
∂

∂uAα
, (1)

where the fields Dxi are called the total derivatives. Differential operators

in total derivatives are called C-differential operators.
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To make contact with the standard setup for the study of partial dif-

ferential systems, recall that xi represent independent and uA dependent

variables. We shall occasionally use the notation u = (u1, . . . , uN)T and

~x = (x1, . . . , xn)T , where the superscript T indicates matrix transposition.

A partial differential system in this setting is a submanifold in Jk(π). Lo-

cally, such a system can be given by the conditions F1 = · · · = Fm = 0,

where FI are smooth functions on Jk(π).

Such smooth functions will hereinafter often be referred to as local func-

tions. We shall sometimes use the notation f(~x, [u]) to indicate that f is

a local function.

The infinite prolongation of the system in question is the submanifold

(in general, with singularities) E in J∞(π) satisfying the conditions (Dxi1 ◦
· · · ◦Dxis)(FI) = 0 for all I = 1, . . . ,m, s ≥ 0, and 1 ≤ i1, . . . , is ≤ n. Such

a prolongation is known as a diffiety.

Notation: nD indicates n independent variables a.k.a. n dimensions, e.g.

3D for n = 3 and 4D for n = 4. Note that in the literature, including the

papers constituting the coire of the present dissertation, one also uses the

terms (n+1)-dimensional or n+1 dimensions to indicate n+1 independent

variables; while some authors use this notation to indicate that one of the

independent variables is distinguished in some way but we do not really

adhere to this convention here.

The Cartan connection can be restricted from the bundle π∞ to the sub-

bundle π∞|E : E →M and so any C-differential operator restricts from J∞(π)

to M . On the other hand, using (1) we can lift any linear differential op-

erator on M to a C-differential operator on E . We always assume below

that E is differentially connected which means that the only solutions of

the system Dxi(f) = 0, i = 1, . . . , n, on E are constants.

In particular, let `E denote the restriction to E of the linearization op-

erator with the entries(∑
α

∂FI
∂uAα

Dα

)
, I = 1, . . . ,m, A = 1, . . . , N.
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Then the solutions of the equation

`E(φ) = 0 on E (2)

are identified with generalized, or (infinitesimal) higher, symmetries of E ,

i.e., with the vertical vector fields
∑

A φ
A∂/∂uA whose infinite prolonga-

tions ∑
A,α

Dα(φA)∂/∂uAα

are tangential to E .

The solutions of equation formally adjoint to (2), that is,

`∗E(ψ) = 0 on E

are called cosymmetries; here `∗E is the formal adjoint of `E .

The lift dh of the de Rham differential gives rise to the horizontal

de Rham complex on E ; dh-closed (n − 1)-forms are conservation laws

of E and dh-exact forms are trivial conservation laws. To any conservation

law ω one can associate its characteristic ψω which is a cosymmetry.

In what follows we shall mostly encounter two-component conservation

laws for which the (n− 1)-form ω in question has, in suitably chosen local

coordinates, just two nonzero components, so its closeness condition can

be written as

Dxi1(ρ) = Dxi2(σ)

on E for some specific indices i1 and i2.

A morphism of diffieties is a smooth map τ : Ẽ → E which takes the

Cartan distribution C̃ on Ẽ to that on E . A morphism τ is a (differential)

covering if its differential maps the Cartan plane Cθ̃ to Cτ(θ̃) isomorphically

for any θ̃ ∈ Ẽ . In other words, for any vector field Z on M the field C̃Z
projects to CZ . Thus, in local coordinates the total derivatives on Ẽ read

D̃xi = Dxi +Xi, i = 1, . . . , n, (3)
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where Dxi are the total derivatives on E , and

Dxi(Xj)−Dxj(Xi) + [Xi, Xj] = 0, 1 ≤ i < j ≤ n,

Xi being τ -vertical vector fields on Ẽ . A covering τ : Ẽ → E over a differ-

entially connected diffiety is called irreducible if the covering diffiety Ẽ is

differentially connected as well.

Symmetries, cosymmetries, conservation laws of the covering equation Ẽ
are nonlocal symmetries, etc., of E . Local objects depend on formal so-

lutions of E and their partial derivatives; roughly speaking, nonlocal ones

may depend on integrals of these solutions.

For example, the relations

D̃x = Dx +
wu

2
, D̃t = Dt +

w

2

(
u2

2
+ ux

)
(4)

define a covering of the Burgers equation E = {ut = uux+uxx} by the heat

equation Ẽ = {wt = wxx}.
Thus, the nonlocal variable w is related to u by the formulas

wx =
wu

2
, wt =

w

2

(
u2

2
+ ux

)
. (5)

Note that system (5) is compatible by virtue of the Burgers equation.

The form ω = w dx + wx dt is a local conservation law of Ẽ , and its

pullback to E gives a nonlocal conservation law for E . The corresponding

nonlocal conserved density on E , i.e., w, defined by (5), can be informally

thought of as
∫

exp(u/2) dx.

It should be also pointed out that the (isospectral) Lax pairs in this

setting are just linear coverings involving an essential parameter, cf. e.g.

[28] and references therein.

For example, an integrable 6D second-order PDE discovered in [S17],

usuzt − uzust − usuxy + uyusx − uyurz + uzury = 0, (6)
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has a Lax pair given by [S17]

χz −
uz
us
χs − λχx + λ

uz
us
χr = 0, χy −

uy
us
χs − λχt + λ

uy
us
χr = 0, (7)

and (7) quite obviously defines a covering over (6) that involves an essential

parameter λ.

Note that any C-differential operator ∆ on E can be lifted to a C-
differential operator ∆̃ on Ẽ using equations (3). In particular, this can be

done with the linearization operator `E and its adjoint. Solutions of the

equations
˜̀E(φ) = 0, ˜̀∗

E(ψ) = 0

are called nonlocal shadows of symmetries and cosymmetries, respectively.

For the rest of this section consider, following mostly [35, 39], an evo-

lution system in two independent variables, which we denote by x and t,

and N dependent variables uA:

ut = F (x, t,u,u1, . . . ,un), (8)

where uj = ∂ju/∂xj with the understanding that u0 = u, and F is a

smooth function of its arguments.

Let SF denote the diffiety associated with (8). It is immediate that we

can take x, t,u,u1,u2, . . . for local coordinates on SF . This choice greatly

simplifies many of the above definitions, and in what follows we shall stick

to it whenever we deal with a system of the form (8).

First of all, a local function is then just a smooth function of x, t,u and

finitely many uj. We shall denote the algebra of such functions by A.

The total derivatives on SF then read

Dx = ∂/∂x+
∞∑
i=0

N∑
A=1

uAi+1∂/∂u
A
i , Dt = ∂/∂t+

∞∑
i=0

N∑
A=1

Di(FA)∂/∂uAi ,

where uAi stand for ∂iuA/∂xi.
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Next, a symmetry for (8) is identified with a local vector function G

that satisfies

Dt(G)− F ∗(G) = 0, (9)

where F ∗ is a linearization of F , i.e., a N ×N -matrix-valued C-differential

operator with the entries

(F ∗)
A
B =

n∑
j=0

∂FA/∂uBj D
j
x.

Likewise, a cosymmetry γ for (8) by definition must satisfy

Dt(γ) + F †∗(γ) = 0, (10)

where F †∗ is the formal adjoint of F ∗.

In turn, without loss of generality we can assume that a conservation

law for (8) is a horizontal differential one-form ρdx+ σdt, where ρ, σ ∈ A,

such that

Dt(ρ) = Dx(σ); (11)

ρ is called the density and σ the flux.

The characteristic of such a conservation law has the form δρ/δu, where

δ/δu =
∞∑
i=0

(−Dx)
i ◦ ∂/∂ui

is the operator of variational derivative.

A conservation law ρdx + σdt is said to be trivial if there is a ζ ∈ A
such that ρ = Dxζ and σ = Dtζ.
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3 Symmetries and conservation laws

for evolution systems

In this section we present some results on symmetries and local conserva-

tion laws for certain evolution systems of the form (8).

It is well known, cf. e.g. [28, 39], that finding all generalized symmetries

and/or all local conservation laws for a given system (8) is, in general, quite

challenging and has been done for rather few systems to date.

3.1 Generalized symmetries

The search for generalized symmetries can often be greatly aided by the

formal symmetry approach, see [35] and references therein, a modification

of which allowing for explicit time dependence in the equation under study

as well as its symmetries, can be found in [SV].

Using this enabled us to obtain inter alia the complete description of

generalized symmetries for the following equation [23, 24] arising in the

study of shallow water waves:

ut = −ux −
3

2
auux −

1

6
buxxx +

3

8
a2u2ux −

23

24
abuxuxx −

5

12
abuuxxx

+
d

2
(h′u+ hux) +

1

4
bd(−h′′′u− h′′ux + h′uxx + huxxx)−

19

360
b2uxxxxx,

(12)

where a, b, and d are constants, h = h(x) is a smooth function of the

primes indicate x-derivatives of h.

Theorem 1 ([SV]) If a 6= 0, b 6= 0, and d 6= 0 then all generalized sym-

metries of (12) are equivalent to the Lie point ones:

If a 6= 0, b 6= 0, d 6= 0, and h′ 6≡ 0, then the only generalized sym-

metry of (12) is the one with the characteristic equal to F ; this symmetry

corresponds to the Lie point symmetry ∂/∂t, i.e., the time translation.

If a 6= 0, b 6= 0, d 6= 0 and h ≡ const, then, in addition to the time trans-

lation, we have a symmetry with the characteristic ux, which corresponds

to the Lie point symmetry ∂/∂x, i.e., the space translation.

12



Moreover, if a 6= 0, b 6= 0, d 6= 0, h ≡ const, and hd = 4, then in ad-

dition to the space and time translations equation (12) admits a symmetry

with the characteristic 5tF + (x + 2t)ux + 2u− 4/a, which corresponds to

a Lie point symmetry 5t∂/∂t+ (x+ 2t)∂/∂x+ (4/a− 2u)∂/∂u.

As an aside note that for the conservation laws and cosymmetries, using

the formal conservation law technique one can prove the following

Theorem 2 ([SV]) If a 6= 0, b 6= 0, and d 6= 0, then (12) has, modulo

trivial conservation laws, just one local conservation law ρdx+ σdt with

ρ = u,

σ = u− 3

4
au2 − 1

6
buxx +

1

8
a2u3 − 13

48
abu2

x −
5

12
abuuxx

+
d

2
hu+

1

4
bd(−h′′u+ huxx)−

19

360
b2uxxxx .

(13)

associated to the only local cosymmetry γ = 1 of (12).

For another example, below is a complete description of generalized

symmetries for the so-called Bakirov system [6]. This strengthens the ear-

lier beautiful result of [8] stating that the system in question has just one

genuinely generalized symmetry independent of x and t, completing the

disprovement of a longstanding belief that existence of one genuinely gen-

eralized symmetry should imply existence of infinitely many.

Theorem 3 ([S01]) Any generalized symmetry of the Bakirov system

ut = u4 + v2, vt = v4/5, (14)

where now u = (u, v)T , is a linear combination of symmetries with the

characteristics from the following list:

Q1 = (u1, v1)
T ,

Q3 = (2u, v)T ,

Rα = (α(x, t), 0)T ,

Q2 = (u4 + v2, v4/5)T ,

Q4 = (4t(u4 + v2) + xu1, 4tv4/5 + xv1 + 2v)T ,

Q5 = (u6 + 5(5vv2 + 4v2
1)/11, v6)

T ,

where α(x, t) is any smooth solution of the linear equation ∂α/∂t = ∂4α/∂x4.
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Thus, the only genuinely generalized (i.e., not equivalent to a Lie point

one) symmetry for the Bakirov system is Q5.

3.2 Conservation laws for linear evolution equations

In this subsection we shall address the special case of (8) when N = 1, so

u = u, and F = F is linear in all uj:

ut =
k∑
i=0

ai(t, x)ui. (15)

We tacitly assume here that ak 6= 0.

Without loss of generality we shall assume conservation laws to be of

the form (11) and consider them modulo trivial ones.

For equations (15) quite a lot can be said about their conservation laws

and cosymmetries. In particular, the following results hold true:

Theorem 4 ([PS]) For any linear evolution equation (15) of even order

k ≥ 2, all its cosymmetries depend only on x and t, and the space of

all cosymmetries is isomorphic to the space of (smooth) solutions of the

associated adjoint equation

∂f

∂t
+

k∑
i=0

(−1)i
∂i

∂xi
(
ai(t, x)f

)
= 0. (16)

where f = f(x, t).

Corollary 1 ([PS]) For any linear evolution equation (15) of even order

k ≥ 2 its space of conservation laws is exhausted by those with densities

linear in u and is isomorphic to the space of (smooth) solutions of the

associated adjoint equation (16).

Theorem 5 ([PS]) For any linear evolution equation (15) of odd order

k ≥ 3, all its cosymmetries are affine in the totality of variables u0, u1, u2, . . . .

An immediate consequence of the preceding theorem is the following

14



Theorem 6 ([PS]) For any linear evolution equation (15) of odd order

k ≥ 3, the space of its conservation laws is spanned by those with densities

that are at most quadratic in uj, j = 0, 1, 2, . . . .

3.3 Hamiltonian structures and all that

We begin with a brief review of Hamiltonian structures and related matters

following mostly [9, 39].

Consider first a finite-dimensional smooth manifold, say V . Then a

bivector (i.e., a (2,0)-tensor field) P on V is called a Poisson structure,

or a Hamiltonian structure, if its Schouten bracket with itself vanishes or,

equivalently, the associated bracket on C∞(V ), given by

{f, g} =< df, Pdg >

for any f, g ∈ C∞(V ) is skewsymmetric and satisfies the Jacobi identity

(and thus is a Poisson bracket on V . Here and below we shall mostly

interpret a Poisson structure as a linear operator sending one-forms on V

into vector fields on V .

Two Poisson structures P and P̃ are compatible if any linear combination

of the two again is a Poisson structure.

A Poisson structure is nondegenerate if kerP = 0.

A vector field X on V (and the associated dynamical system for its

integral curves) is said to be Hamiltonian w.r.t. a Poisson structure P with

a Hamiltonian H ∈ C∞(V ) if X can be written as X = PdH.

Likewise, X is bihamiltonian w.r.t. a pair of compatible Poisson struc-

tures P and P̃ if there exist H, H̃ ∈ C∞(V ) such that X can be written as

X = PdH = P̃ dH̃; see the seminal paper [32] and e.g. [9, 39] for further

details.

What makes (bi)hamiltonian systems particularly interesting is the well-

known fact that under a number of not too restrictive assumptions X being

bihamiltonian implies integrability by quadratures of the dynamical system

for the integral curves of X, see e.g. [9, 39] and references therein for details.
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This naturally leads to the following question: given a Poisson structure

P , how can one describe all Poisson structures compatible with P?

For nondegenerate P , there is a concise characterization of such struc-

tures:

Theorem 7 ([S04]) Suppose that H2(V ) = 0, i.e., the second de Rham

cohomology of V is trivial, and let P be a nondegenerate Poisson structure

on V . Then a bivector P̃ on V is a Poisson structure compatible with P if

and only if there exist vector fields τ and τ̃ on V such that

P̃ = Lτ(P ) (17)

and

L2
τ(P ) = Lτ̃(P ). (18)

Here and below LX stands for the Lie derivative along the vector field X.

It is clearly easier to look for pairs of vector fields τ and τ̃ that satisfy

(18) for a given nondegenerate P than to look for all Poisson structures

compatible with P using just the definition of compatibility.

Moreover, the idea of the above theorem can be readily generalized to

certain classes of Poisson structures associated to (evolutionary) partial

differential systems, when the remark from the previous paragraph is par-

ticularly relevant, see Theorem 8 below for one such generalization. Note

that in this context Poisson structures are more often referred to as Hamil-

tonian structures, see e.g. [12, 39].

Let us describe, mostly following [12, 39], the simplest yet still quite

interesting setup for this case. Like as in our earlier discussion of evolution

systems in two independent variables, let a local function now be just a

smooth function of x, t,u and finitely many uj, and denote the algebra of

local functions by A.

Let V denote the Lie algebra of evolutionary vector fields of the form

vφ =
N∑
A=1

∞∑
j=0

Dj
x(φ

A)∂/∂uAj
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where φA ∈ A (recall that φ is called a characteristic of such a vector field,

cf. e.g. [39]). As an evolutionary vector field vφ is uniquely determined by

its characteristic φ, as a vector space V ' AN . We shall implicitly make

use of this below.

The dual V∗ of V in our setting is the space of 1-forms of the form

ω =
N∑
A=1

ωAdu
A

with ωA ∈ A.

The pairing is defined as follows:

< ω,vφ >=

∫
dx

N∑
A=1

φAωA

with integral
∫
dx understood in the spirit of formal calculus of variations

[12, 39].

We also need the space L of functionals of the form H =
∫
hdx, where

h ∈ A. For such a functional its variation is defined as

δH = δh/δu.

A linear C-differential operator P : V∗ → V is a Hamiltonian operator if

the associated bracket defined by the formula

{G,H} =< δG, P δH > ∀G,H ∈ L

is a Poisson bracket on L, i.e., it is skewsymmetric and satisfies the Jacobi

identity.

In local coordinates such an operator has the form

P =
s∑
i=0

piD
i
x

where pi are N ×N matrices whose entries belong to A.
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Note that the requirement of being C-differential can be relaxed to allow

for certain nonlocalities, cf. e.g. [12, 17, 27, 28] and references therein for

details.

Thus, we can think of P as of an operator that sends an element of V∗

into a characteristic of an evolutionary vector field.

With this in mind, an evolution system (8) is Hamiltonian with respect

a Hamiltonian operator P with a Hamiltonian H ∈ L if the right-hand side

of (8) can be written as F = PδH.

Note that for a system of the form (8) a functional H =
∫
hdx ∈ L is

said to be an integral of motion if h is a conserved density, that is, there

is a σ ∈ A such that Dt(h) = Dx(σ) and thus hdx+ σdt is a conservation

law for the system under study.

The definition of bihamiltonian system then mimics that of a bihamilto-

nian vector field above, with X replaced by F and d by δ, cf. e.g. [9, 12, 39].

Again, just as in the case of finite-dimensional integrable dynamical

systems, if a system (8) is bihamiltonian, then, under certain technical as-

sumptions it admits, see e.g. [9, 12, 39] and references therein, infinitely

many commuting symmetries and integrals of motion that commute with

respect to both Poisson brackets associated with the relevant Hamiltonian

operators.

This makes finding bihamiltonian representation for a given partial dif-

ferential system, which in many cases is quite a nontrivial task, an impor-

tant step in establishing integrability of the latter.

Consider the operators P from V∗ to V , that can be written as P =

||PAB|| where

PAB = gABDx +
N∑
C=1

fABC uC1 , (19)

and gAB and fABC depend only on u.

The seminal result of Dubrovin and Novikov [15] is that if gAB defines a

nondegenerate (pseudo-)Riemannian metric g then the following holds: P

defined by (19) is a Hamiltonian operator if and only if g is flat and we have
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fABC = −
∑N

D=1 g
ADΓBDC where the Γ’s are components of the Levi–Civita

connection for g. Such Hamiltonian operators are known as Hamiltonian

operators of Dubrovin–Novikov type. Note that if g is degenerate, the

conditions for (19) to define a Hamiltonian operator are significantly more

complicated, see e.g. [43] for details.

There is the following analog of Theorem 7 for this case:

Theorem 8 ([S04]) Let P be a Hamiltonian operator of Dubrovin–Novikov

type, i.e. of the form (19) with nondegenerate g.

Consider another operator P̃ : V∗ → V from the class (19), that is, of

the form P̃ = ||P̃AB||, where

P̃AB = g̃ABDx +
N∑
C=1

f̃ABC uC1 , (20)

and g̃AB and f̃ABC depend only on u.

Then any such P̃ is a Hamiltonian operator compatible with P if and

only if there exist, in general only locally defined, τ ∈ AN and τ̃ ∈ AN that

depend on u alone, such that the following conditions hold:

i) P̃ can be written as P̃ = Lvτ (P );

ii) L2
vτ

(P ) = Lvτ̃ (P ).

We stress that the nondegeneracy of g is assumed in the above theorem

but that of g̃ is not.

The term ‘locally defined’ here means that τ and τ̃ in general can be

defined only on certain open domains but not necessarily for all u. In the

language of Section 2 τ and τ̃ can, roughly speaking, be thought of as local

(rather than global) vector fields on E. For the details on the definition of

Lie derivative for Hamiltonian operators see e.g. [9, 12].

Now turn to the problem of finding bihamiltonian representations for

specific evolutionary systems (8). There is no general recipe for finding

those, and sometimes this can be quite a challenge, as illustrated by the

following result.
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Theorem 9 ([S05]) The system found in [22],

ut = 4uxxx − vxxx − 12uux + vux + 2uvx,

vt = 9uxxx − 2vxxx − 12vux − 6uvx + 4vvx,

where now u = (u, v)T , is bihamiltonian:

ut = P1δH0 = P0δH1, (21)

where H0 =
∫
dx(v/2 − 3u), H1 =

∫
dx(2u2 − uv + v2/9), and P0 and P1

are compatible Hamiltonian operators of the form

P0 =

(
D3
x − 2uDx − ux 0

0 −9D3
x + 12vDx + 6vx

)
, P1 =

(
a11 a12

a21 a22

)
,

where

a11 = D5
x − 4uD3

x − 6uxD
2
x + 4(u2 − uxx)Dx − uxxx + 4uux − uxD−1

x ◦ ux,
a12 = 2D5

x − (2u+ 3v)D3
x + 4(ux − 2vx)D

2
x + (6uxx − 7vxx − 4u2 + 6uv)Dx

+2uxxx − 2vxxx − 6uux + 3vux + 4uvx − uxD−1
x ◦ vx,

a21 = 2D5
x − (2u+ 3v)D3

x − (10ux + vx)D
2
x + (−4u2 + 6uv − 8uxx)Dx

−2uxxx − 2uux + 3vux + 2uvx − vxD−1
x ◦ ux,

a22 = 3D5
x + (18u− 12v)D3

x + (27ux − 12vx)D
2
x

+(21uxx − 14vxx − 12u2 − 12uv + 9v2)Dx

+6uxxx − 4vxxx − 12uux − 6vux − 6uvx + 9vvx − vxD−1
x ◦ vx.

Define the quantities Qj and Hj =
∫
hjdx recursively by the formula

Qj = P1δHj = P0δHj+1, j = 0, 1, 2, . . . . Then hj, j = 2, 3, . . . , are local

functions that can be chosen to be independent of x and t, and vQj
are local

commuting generalized symmetries for (21) for all j = 1, 2, . . . .

Moreover, the evolution systems utj = Qj are bihamiltonian with respect

to P1 and P0 by construction, and Hj =
∫
hjdx are in involution with re-

spect to the Poisson brackets associated with P0 and P1 for all j = 0, 1, 2 . . . ,

so Hj are joint integrals of motion for all evolution systems utk = Qk,

k = 0, 1, 2, . . . .
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Another system whose bihamiltonian represenattion was elusive for quite

a long time is presented below.

Theorem 10 ([SD]) The Sasa–Satsuma [40] system

pt = pxxx + 9pqpx + 3p2qx, qt = qxxx + 9pqqx + 3q2px (22)

is a bihamiltonian system with a pair of compatible Hamiltonian operators

P =

 −pD−1
x ◦ p Dx + pD−1

x ◦ q

Dx + qD−1
x ◦ p −qD−1

x ◦ q

 ,

and P̃ = P ◦ J ◦ P . Here J is a symplectic operator of the form

J =

 3qD−1
x ◦ q Dx + 2pD−1

x ◦ q + 3qD−1
x ◦ p

Dx + 2qD−1
x ◦ p+ 3pD−1

x ◦ q 3pD−1
x ◦ p

 .

The bihamiltonian representation for (22) reads

ut = PδH0 = P̃ δH1

where now u = (p, q)T , H0 =
∫
dx(2p2q2 − pxqx), H1 =

∫
dx pq.

In this case establishing locality of Hj and Qj defined through the re-

lations Qj = P̃ δHj = PδHj+1 mimicking those in Theorem 9, and locality

of Qj is more difficult than e.g. for (21), and was done in the later work

by Wang [45] who has also fixed some typos in J ; J in the above theorem

already incorporate her corrections.

21



4 Nonlocal objects related to integrable systems

4.1 Commuting nonlocal symmetries

Consider the four-dimensional Mart́ınez Alonso–Shabat equation

uty = uz uxy − uy uxz (23)

introduced in [2]. It has [36] a covering defined by system

qy = λuy qx, qz = λ (uz qx − qt) (24)

with a non-removable parameter λ (which means that (24) defines a Lax

pair for (23)), and a recursion operator, and is therefore integrable.

Moreover, there is another Lax pair for (23)

wy = λ (uy wx − uxy w), wz = λ(uz wx − wt − uxz w) (25)

that defines another covering over (23) with an important property: if w

satisfies (25) then it is a nonlocal symmetry shadow for (23).

We have the following important observation.

Consider a copy of the covering (25) with the parameter µ:

w̃y = µ (uy w̃x − uxy w̃), wz = µ(uz w̃x − w̃t − uxz w̃) (26)

Proposition 1 ([MS]) The system

uτ = w̃, wτ =
λµ

µ− λ
(w̃ wx − w w̃x)

is compatible with (23) and (25), i.e.,

w̃
∂

∂u
+

λµ

µ− λ
(w̃ wx − w w̃x)

∂

∂w
, (27)

is a symmetry for (23)+(25).
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Substituting into (25) a formal expansion w =
∞∑
i=0

wiλ
i gives rise to

another covering over (23) generated by the system

(wi)y = uy (wi−1)x − uxy wi−1,

(wi)z = uz (wi−1)x − (wi−1)t − uxz wi−1
(28)

for i = 1, 2, . . . ; w0 is an arbitrary smooth function of t and x.

More precisely, (28) defines an infinite-dimensional covering, say W ,

over (23) with the nonlocal variables wiab, and when spelled out in full this

covering is given by

(wiab)x = wi,a+1,b, (wiab)t = wi,a,b+1, a, b = 0, 1, 2, . . . (29)

with wi00 ≡ wi, along with (28), and differential consequences of both (28)

and (29).

It is readily checked that wi are nonlocal shadows for (23), and, most

importantly, using the above proposition and performing formal expansions

w.r.t. the parameters involved, it can be shown that these shadows can be

promoted to full-fledged nonlocal symmetries of (23) in the covering W ,

and these symmetries commute:

Theorem 11 ([MS]) The infinite prolongations of the vector fields

Qi = wi
∂

∂u
+
∞∑
j=1

i−1∑
k=0

(wi+j−k−1 (wk)x − wk (wi+j−k−1)x)
∂

∂wj
, (30)

where i ∈ N, upon restriction to (23) and (28) form an infinite series of

commuting nonlocal symmetries for equation (23) in the covering (28).

It is important to stress that finding a nonlocal symmetry similar to (27)

for a system consisting of a nonlinear partial differential system and its Lax

pair, like (23)+(25), is fairly straightforward, so the likes of Proposition 1

and hence of Theorem 11 can be proved for many other integrable mul-

tidimensional systems with isospectral Lax pairs, enabling one to obtain
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explicit form of the associated hierarchies of nonlocal commuting symme-

tries. Such hierarchies are intimately related to integrability and are rather

difficult to construct by other means as the recursion operators for systems

in more than two independent variables typically produce nonlocal shad-

ows rather than full-fledged nonlocal symmetries, cf. e.g. [28, S17] and

references therein.

4.2 Recursion operators

Recall that, informally, a recursion operator for a given system is an op-

erator that maps a symmetry of the system under study into (another)

symmetry, cf. the seminal paper [38] and e.g. [9, 16, 39]. However, the

recursion operators for partial differential systems often involve nonlocal-

ities, and it turns out that a proper way to handle those is to think of a

recursion operator as of a Bäcklund auto-transformation for the linearized

version of the system under study, see [21, 34, 28] and references therein for

details. Note that for certain systems in more than two independent vari-

ables there exist recursion operators of different type, namely bilocal ones,

see e.g. [9, 19] and references therein, but this is beyond our scope here.

As it was already pointed out a bit earlier, existence of infinite hierar-

chies of symmetries is an important feature of integrable partial differential

systems, and the recursion operators provide a highly useful tool for gen-

erating such hierarchies, cf. e.g. [28, 39].

Consider a partial differential system

FI(~x, [u]) = 0, I = 1, . . . ,m, (31)

denote by F the associated diffiety, and introduce the following notation

for operators in total derivatives:

Ai = A0
i +

n∑
j=1

Aj
iDxj , Bi = B0

i +
n∑
j=1

Bj
iDxj , i = 1, 2,

L = L0 +
n∑
k=1

LkDxk, M = M 0 +
n∑
k=1

MkDxk.
(32)
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Here Aj
i = Aj

i (~x, [u]) and Bj
i = Bj

i (~x, [u]) for i = 1, 2 and j = 1, . . . , n

are scalar functions, A0
i = A0

i (~x, [u]) and B0
i = B0

i (~x, [u]) for i = 1, 2 are

N ×N matrices, Lk = Lk(~x, [u]) for k = 0, . . . , n are N ×m matrices, and

Mk = Mk(~x, [u]) for k = 0, . . . , n are m×N matrices.

Theorem 12 ([S17]) Suppose that for a system (31) there exist the oper-

ators Ai, Bi, L,M of the form (32) such that

i) [A1, A2] = 0, (33)

ii) [B1, B2] = 0, (34)

iii) (A1B2 − A2B1) = L ◦ `F , (35)

iv) `F = M ◦ (B1A2 −B2A1), (36)

v) there exist p, q ∈ {1, . . . , n}, p 6= q, such that we can

express DxpŨ and DxqŨ from the relations

Ai(Ũ) = Bi(U), i = 1, 2. (37)

Then relations (37) define a recursion operator for (31), i.e., whenever U

is a nonlocal symmetry shadow for (31), so is Ũ defined by (37).

A natural source of Ai, Bi and L, M satisfying the conditions of Propo-

sition 12 is provided by the Lax pairs for (31) of the form

Liψ = 0, i = 1, 2, (38)

with Li linear in λ such that ψ is a nonlocal symmetry shadow for (31).

Then putting Li = λBi −Ai or Li = λAi −Bi gives us natural candidates

for Ai and Bi which then should be checked against the conditions of

Proposition 12, and, if the latter hold, yield a recursion operator for (31).

For example, consider the general heavenly equation [13, 41]

auxyuzt + buxzuyt + cuxtuyz = 0, a+ b+ c = 0, (39)

where a, b, c are constants.
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Proposition 2 ([S17]) If U is a nonlocal symmetry shadow for (39) then

Ũx =
uxzUt + cuxtŨz − uztUx

cuzt
, Ũy = −uyzUt − buytŨz − uztUy

buzt
(40)

defines another nonlocal symmetry shadow Ũ for (39), i.e., the relations

(40) define a recursion operator for (39).

It is important to stress that the Lax pair with the operators Li em-

ployed in the above construction does not have to be the original Lax pair

of our system (31). In general, we should custom tailor the operators L1,2

constituting the Lax pair for the construction in question, so that the solu-

tions of the associated linear problem (38) are shadows of nonlocal symme-

tries, i.e., satisfy the linearized version of our system, see [S17] for details.

The method in question, based on the above remarks and Theorem 12,

is quite straightforward to apply and works for plenty of examples of mul-

tidimensional integrable systems with isospectral Lax pairs, and other au-

thors have already found a number of new recursion operators using our

approach, see e.g. [7, 29]. It should also be noted that our method, when

applicable, requires significantly less computations than e.g. that of [37].

26



5 Integrable systems in four independent variables

Among integrable systems, those in four independent variables (4D) are of

particular interest, as four is the dimension of our spacetim according to

general relativity, so gaining a deeper understanding of such systems could

be quite significant for possible applications, including those in physics.

Such systems were long believed to be quite scarce, and an efficient con-

struction for such systems remained elusive. The overwhelming majority of

previously known integrable 4D systems are dispersionless in the following

sense.

A partial differential system is said (cf. e.g. [10, 18] and references

therein) to be of hydrodynamic type, or dispersionless, if it can be writ-

ten as a first-order homogeneous quasilinear system, that is,

A1(u)ux1 + A2(u)ux2 + · · ·+ An(u)uxn = 0; (41)

Ai are M×N matrices, M > N , u ≡ (u1, . . . , uN)T ; ~x = (x1, . . . , xn)T , u =

u(~x). Such systems have many applications including e.g. fluid dynqamics,

nonlinear optics, and general relativity, see for example [10, 16, 18, 46] and

references therein.

In what follows we shall deal with dispersionless systems in four inde-

pendent variables that will be denoted x, y, z, t, so the systems under study

will read

A1(u)ux + A2(u)uy + A3(u)uz + A4(u)ut = 0, (42)

For an h = h(p,u) define an operator Xh as

Xh = hp∂x + (phz − hx)∂p + (h− php)∂z (43)

which formally looks exactly like the contact vector field with a contact

hamiltonian h on a contact 3-manifold with local coordinates x, z, p and

contact one-form dz + pdx, see [S18] for details.

A linear system

χy = Xf(χ), χt = Xg(χ) (44)
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for χ = χ(x, y, z, t, p) will be hereinafter referred to [S18] as a linear contact

Lax pair. Here p is the so-called variable spectral parameter (recall that

u = u(x, y, z, t), so up ≡ 0, f = f(p,u), g = g(p,u) are the Lax functions

and L = ∂y −Xf and M = ∂t −Xg are the Lax operators.

Fix f and g in (44) and consider for a moment the associated Lax equa-

tion

[∂y −Xf , ∂t −Xg] = 0, (45)

expressing the compatibility condition for (44). This compatibility condi-

tion can be expressed in a more concise form that simplifies many compu-

tations.

Proposition 3 ([S18]) The Lax equation (45) holds iff so does

ft − gy + {f, g} = 0, (46)

where {f, g} = fpgx − gpfx − p (fpgz − gpfz) + fgz − gfz is a (special case

of) the so-called contact bracket.

The Lax pairs (44) provide a new and natural 4D generalization of a

well-known (see e.g. [10, 11, 16, 46] and references therein) 3D Lax pairs

χy = Xf(χ), χt = Xg(χ), (47)

where Xh = hp∂x−hx∂p, since if uz = 0 and χz = 0 then (44) boils down to

(47). The class of integrable 3D systems with Lax pairs (47) is quite broad,

see e.g. [10, 18, 33, 46], so it is natural to ask whether this holds true for

the class of integrable 4D systems with linear contact Lax pairs (44).

The following result shows that this is indeed the case and there is

infinitely many pairs (f, g) such that the systems for u with Lax pairs

(44) are new genuinely 4D integrable nonlinear systems transformable into

Cauchy–Kowalevski form.

Theorem 13 ([S18]) Linear contact Lax pairs yield new integrable 4D

systems that can be brought into Cauchy–Kowalevski form for the follow-

ing pairs of f and g:
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1. f = pk+1 +
k∑
i=0
uip

i, g = pl+1 +
l

k
ulp

l +
l−1∑
j=0

vjp
j

with u = (u0, . . . , uk, v0, . . . , vl−1)
T ;

2. f =
k∑
i=1

ai
(p− ui)

, g =
l∑

j=1

bj
(p− vj)

with u = (a1, . . . , ak, u1, . . . , uk, b1, . . . , bl, v1, . . . , vl)
T .

Here k, l = 1, 2, 3, . . . are arbitrary natural numbers.

Note that linear contact Lax pairs (44) belong to a broader class of

nonisospectral1 Lax pairs

χy = K1(p,u)χx +K2(p,u)χz +K3(p,u)χp,

χt = L1(p,u)χx + L2(p,u)χz + L3(p,u)χp,
(48)

and hence are amenable to an appropriate version of the inverse scattering

transform, cf. e.g. [33] and references therein, which paves the way to con-

structing explicit exact solutions of the nonlinear systems admitting such

Lax pairs. For the discussion of geometric approach to the Lax pairs (48)

see e.g. [11] and references therein.

Let us also mention the following

Proposition 4 ([S18]) A system (42) admits a linear contact Lax pair

of the form (44) if and only if it admits a nonlinear Lax pair for ψ =

ψ(x, y, z, t) of the form

ψy = ψzf(ψx/ψz,u), ψt = ψzg(ψx/ψz,u) (49)

with the same functions f and g as in (44).

Note that (49) is nothing but a pair of nonstationary Hamilton–Jacobi

equations. Such systems are a special case of multitime Hamilton–Jacobi

systems that were intensively studied in a different context, cf. e.g. [30].

1Roughly speaking, nonisospectrality here refers to the fact that the Lax pairs in question involve the
derivatives with respect to p; for nonisospectral Lax pairs in general see e.g. [10, 11, 16] and references
therein.
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For example, let u = (u, v, w, r)T , and f = p2 +wp+u, g = p3 + 2wp2 +

rp + v, i.e., k = 1, l = 2, u0 ≡ u, u1 ≡ w, v0 ≡ v, v1 ≡ r, in the first of two

classes from Theorem 13.

The linear contact Lax pair χy = Xf(χ), χt = Xg(χ) then reads

χy = (2p+ w)χx + (−p2 + u)χz + (wzp
2 + (uz − wx)p− ux)χp,

χt = (r + 4wp+ 3p2)χx + (v − 2wp2 − 2p3)χz

+(2wzp
3 + (rz − 2wx)p

2 + (vz − rx)p− vx)χp,

(50)

while the nonlinear Lax pair as per Proposition 4 has the form

ψy = ψz

((
ψx
ψz

)2

+ w
ψx
ψz

+ u

)
, ψt = ψz

((
ψx
ψz

)3

+ 2w

(
ψx
ψz

)2

+ r
ψx
ψz

+ v

)
.

The associated integrable system for u reads

ut − vuz − rux + uvz + wvx − vy = 0,

2uz + wx + 2wwz − rz = 0,

2rx − 3ux − 2wy + 2wuz − vz − 2wwx + 2uwz = 0,

wt − ry + 2vx − 4wux + wrx − rwx − vwz + urz = 0.

(51)

Note [S18] that the above system provides a novel integrable 4D generaliza-

tion for the well-known integrable dispersionless Kadomtsev–Petviashvili

equation, see e.g. [16, 46] and references therein for details on this equation.

Let us also point out that using a formal expansion of χ in p enables

one to find an infinite hierarchy of nonlocal conservation laws for (51)

using (50), see [S18] for details, and the same can be done for many other

integrable systems with linear contact Lax pairs (44).

It should be pointed out that there are integrable 4D systems with con-

tact Lax pairs whose Lax functions are not rational. Below we give an

example involving algebraic Lax functions which, to the best of our knowl-

edge, is the first example of an integrable 4D system with a nonisospectral

Lax pair which is not rational in the spectral parameter.
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Consider [S19] the following 4D evolutionary system for u = (a, b, r, s, u, v, w)T:

at =
1

r2 − 2rsa+ 2s2b

(
(4w(ra− sb)− vr)ax + ray

+
(
2w (2a(ra− sb)− rb)− ur

)
az

+(vs− 2wr)bx − sby + (2w(sb− ra) + us)bz

+(r − sa)ux + (ra− 2sb)uz + (2sb− ra)vx

+2(a(sb− ra) + rb)vz + 2(a(ar − sb)− rb)wx

+2
(
2a2(ar − sb)− 3rab+ 2sb2

)
wz

)
,

bt =
1

r2 − 2rsa+ 2s2b

(
2(2wr − vs)bax + 2sbay

+2(2w(ra− sb)− us)baz

+(2s(va− 2wb)− vr)bx + (r − 2sa)by

+(2(usa− wrb)− ur)bz

+(2s(b− a2) + ra)ux + 2(r − sa)buz

−2(r − sa)bvx − 2(ra− 2sb)bvz

+2(ra− 2sb)bwx + 4(a(ra− sb)− rb)bwz
)
,

rt =
1

r2 − 2rsa+ 2s2b

(
(vs− 2wr)rax − rsay

−(2w(ra− sb)− us)raz + (2wr − vs)sbx

+s2by + (wr2 − us2)bz + (sa− r)sux + (2sb− ra)suz

+(r − sa)rvx + (ra− 2sb)rvz

+(2sb− ra)rwx − 2(a(ra− sb)− rb)rwz
)
,

st = wx + awz + waz,

ut = arx + 2brz − sbx,
vt = rx + arz + asx + 2bsz − sax + sbz,

wt = sx + asz + saz.

(52)
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Theorem 14 ([S19]) The seven-component 4D evolutionary system (52)

is integrable since it admits a Lax pair of the form (44) with algebraic Lax

functions f and g given by

f = u+ vp+ wp2 + (r + sp)
√
p2 + 2ap+ 2b,

g =
√
p2 + 2ap+ 2b,

(53)

that is,

χy =
1

g

((
2sp2 + (r + 3sa+ 2wg)p+ ra+ vg + 2sb

)
χx

+
(
−sp3 − (wg + sa)p2 + pra+ 2rb+ ug

)
χz

+
(
szp

4 + (2asz + saz + rz + gwz − sx)p3

+((vz − wx)g + 2bsz + raz + sbz

−2asx − sax − rx + 2arz)p
2

+((uz − vx)g + rbz − rax − sbx − 2bsx − 2rxa+ 2brz)p

−rbx − gux − 2brx
)
χp

)
,

χt =
1

g

(
(p+ a)χx + (ap+ 2b)χz + (azp

2 + p(bz − ax)− bx)χp
)
,

(54)

and a nonlinear Lax pair of the form (49) with f and g given by (53):

ψy = uψz + vψx + wψ2
x/ψz + (rψz + sψx)

√
(ψx/ψz)2 + 2aψx/ψz + 2b,

ψt = ψz
√

(ψx/ψz)2 + 2aψx/ψz + 2b.
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